

Bohrungsmessdorne

www.diatest.com

Inhalt

Seite

- 3 DIATEST Kompetenz für Präzision und Sicherheit
- 4 Technische Beschreibung
- 9 BMD Grundtypen
- 10 Grundtyp Standard
- 11 Grundtyp für Durchgangsbohrungen
- 12 Grundtyp für Sacklochbohrungen
- 13 Grundtyp mit Luftanschluss
- 14 BMD für automatische Messungen
- 15 Sondertypen
- 21 BMD zum Messen paralleler Abstände
- 22 Mehrstellenmessdorne
- 24 Messuhrhalter
- 27 Messuhrhalter mit Federkraftregulierung
- 29 Elektrische Halter
- 30 Spezial-Messuhrhalter
- 33 Halter für Analodig-Messuhr
- 34 Adapter
- 36 Winkelstücke
- 37 Tiefenverlängerungen
- 40 Tiefenanschläge
- 42 Kleinmessvorrichtung
- 46 Schwimmhalter
- 50 Ersatzteile
- 51 Technische und allgemeine Kurzbezeichnung

Hochleistungstechnik ist nur mit Präzision möglich, eine weltweite Produktion benötigt Kompetenz vor Ort. Um eine höchstmögliche Sicherheit in der Fertigung zu gewährleisten, ist Präzision von der Planung bis zum fertigen Produkt ebenso notwendig, wie ein kompetenter und ausgebildeter DIATEST-Partner vor Ort, der die Landessprache spricht und die Produkte kennt.

Unsere Kunden sind Hersteller in aller Welt, die ein Höchstmaß an Genauigkeit und Qualität verlangen, wie z.B. die Luft- und Raumfahrtindustrie, die Automobil- und Hydraulikindustrie, Medizintechnik sowie der allgemeine Maschinenbau.

(DATS)

Ihr Vorteil als Anwender? Egal in welchem industrialisierten Land Sie Ihre Waren produzieren, Sie haben immer Sicherheit durch DIATEST Qualität. Ihr lokaler DIATEST-Händler garantiert eine Betreuung vor Ort. Unsere Händler kennen nicht nur Ihr Land und Ihre Kultur, Ihre Sprache und den Markt, sie haben auch Erfahrung und Know-how in Sachen DIATEST und Qualitätssicherung.

Der Name DIATEST bürgt für weltweite Qualität, Kompetenz und Sicherheit. Messgeräte mit einer Genauigkeit von bis zu 0,0002 mm / 0,000008 inch ermitteln ein absolut exaktes Ergebnis. Zukunftsorientierte Fertigungstechniken, über Jahre ausgebildete Feinwerkmechaniker und Ingenieurskönnen garantieren zudem höchste Qualitätsstandards. Damit sind DIATEST Messgeräte und -lösungen, die seit 1996 nach DIN ISO 9001 gefertigt werden, auch den künftigen technologischen Anforderungen (Industrie 4.0, VDA Band 5, etc...) durch ständige Weiterentwicklung gewachsen – egal, ob es sich um Standard- oder kundenspezifische Sonderlösungen handelt.

Dafür sorgt eine von erfahrenen Mitarbeitern und weltweiten Partnern getragene Unternehmens-Philosophie:
Höchste Qualität zu einem fairen Preis-/Leistungsverhältnis, zusammen mit fachgerechter Beratung, Service und absoluter Termintreue im Umgang mit allen DIATEST-Kunden. Ein für uns selbstverständlicher Service, den unsere DIATEST-Partner weltweit zu schätzen wissen.
Das verstehen wir unter Partnerschaft!

DIATEST – Sicherheit durch Qualität, Präzision und Kompetenz in über 40 Ländern der Erde

→ I)) INDUSTRIE 4.0

Output

Description:

Output

Descriptio

BAND 5 ready

Der Bohrungsmessdorn (BMD) ist ein anzeigendes, selbstzentrierendes Messgerät mit hoher Genauigkeit. Er zeichnet sich durch einfache Handhabung aus. Der BMD erlaubt statische und dynamische Messungen. Er eignet sich zum Erkennen von Maßabweichungen und Formfehlern bei Bohrungen in der Serienmessung mit Hand direkt an der Maschine, aber auch zum Einbau in Messvorrichtungen und Automaten.

Der breite Einsatzbereich und die einfache Handhabung bei gleichzeitig höchster Präzision und robuster Ausführung zeigen die Wirtschaftlichkeit des Systems. Die große Anzahl an Grundtypen im Standardprogramm mit dem sinnvollen Zubehör erlauben die Messung der meisten in der Praxis vorkommenden Bohrungen. Das Anzeigegerät kann von der mechanischen Messuhr über die digitalen Anzeigen bis zum Messtaster mit angeschlossenem Auswertegerät frei gewählt werden. Peripheriegeräte ermöglichen statistische Messdatenauswertung, maßabhängige Maschinensteuerung und vieles mehr.

Sonderausführungen

Das BMD-Handbuch soll bei der Auswahl der geeigneten Messelemente helfen. Bei speziellen Messproblemen benötigen wir eine genaue Beschreibung der Messaufgabe sowie eine Zeichnung und ggf. ein Musterwerkstück, um ein Angebot zu erstellen. Nur bei ausführlichen Informationen können wir ein optimales Angebot unterbreiten.

Sonderbeschriftung (SO-B)

Sonderbeschriftung Data Matrix Code (SO-B-DMC) (Mehrpreis)

Sonderbeschriftungen, wie z.B. spezielle kundenspezifische Identnummern, Toleranzen usw. können von uns vorgenommen werden. Bei kleinen BMD ist zu beachten, dass die Möglichkeiten zur Beschriftung begrenzt sind. Der Mehrpreis für SO-B gilt je angefangene 10 Zeichen (siehe Preisliste).

Ausführungen und Materialeigenschaften:

Tastkopf: Federstahl ca. 61 HRC Triebnadel: Hartmetall ca. 1650 HV Führungszylinder: Lehrenstahl oder Edelstahl.

Sonder-Zylinderausführungen: OCR = Stahlzylinder gehärtet und brüniert

Achtung:

Für raue Messbedingungen sind BMD in Ausführung OCR nicht geeignet.

ZHML = Zylinder mit Hartmetall-Leisten,

14

ZKUL = Zylinder mit Kunststoff-Leisten, 🗊 17

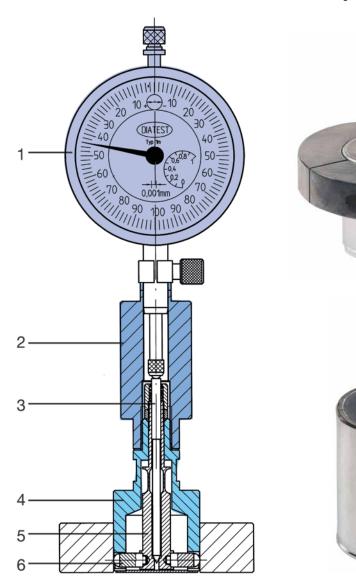
Technische Daten

Alle Maße ohne spezielle Angaben in mm.

Technische Änderungen, welche der Funktionsverbesserung dienen sowie geringe Abweichungen, welche die Funktion der Messgeräte nicht wesentlich beeinflussen, behalten wir uns vor. Über technische Neuerungen und den aktuellen Stand der Dokumentation können Sie sich auch im Internet informieren unter www.diatest.com

Nullstellung

Die Nullstellung sollte prinzipiell in einem Einstellring vorgenommen werden, der dem Kleinstmaß der Bohrung entspricht. Dadurch werden radiale und axiale Fehler schon bei der Kalibrierung weitgehend vermieden.


Am besten eignen sich Einstellringe nach DIN 2250-C. Einstellringe mit höheren Baumaßen oder für Kleinst-, Mittel- und Größtmaß sind i.A. nicht erforderlich.

Funktion

Der Führungszylinder (4) zentriert die in dem Tastkopf (5) eingebauten Messradien (6) axial und radial in der Bohrung. Der geläppte Kegel der Triebnadel (3) überträgt den Messweg der Messkontakte im Verhältnis 1:1 auf das in dem Halter (2) eingespannte Anzeigegerät (1)

TA-KW

SO-ZL

Technische Beschreibung

Lieferzeiten

Die Lieferzeiten gelten ab Werk. Bei Expressbestellung ist noch der Wochentag zu berücksichtigen, an dem der Versand erfolgen kann.

Standzeit

Die Standzeit ist abhängig von den Messbedingungen wie Werkstückoberfläche (Rauheit, Beschichtung), Material, zu messender Bohrungslänge, Verschmutzung, Messkraft usw. Unter optimalen Bedingungen sind bis zu mehrere Millionen Messungen möglich.

Reparatur-Service

DIATEST bietet einen schnellen und kostengünstigen Reparatur-Service für Standard BMD an. Service 1: Austausch der Messmechanik und Funktionsprüfung. Lieferzeit: ca. 10 Arbeitstage Service 2: Austausch der Messmechanik, neu Verchromen des BMD-Zylinders und Funktionsprüfung. Lieferzeit: ca. 15 Arbeitstage Für Sonder-BMD erstellen wir einen Kostenvoranschlag.

Wartung

Eine spezielle Wartung ist nicht erforderlich. Bei Verschmutzung Triebnadel ausbauen und den

BMD mit Triebnadel vorsichtig mit Luft und in einer Reinigungslösung säubern.

Wichtig: Der Triebnadelkegel sollte vor der Montage gefettet werden (z.B. Vaseline). Bei der Montage der Triebnadel für Serie 6 und 10 beachten, dass die Feder wieder montiert wird (keine Feder bei Serie 4).

BMD XQ - Höhere Mess-Sicherheit

Stark erhöhte Mess-Sicherheit für immer engere Toleranzen. Besonders in Verbindung mit der digitalen Anzeige DIATRON1000 und dessen Auflösung von 0,1 µm.

Messgenauigkeit der BMD

Die zulässigen Abweichungen bei neuwertigen BMD dürfen max. betragen:

Wiederholgenauigkeiten

- 2-Punkt-Ausführung $fw \le 0,001 \text{ mm}$
- 2-Punkt-Ausführung-XQ $fw \le 0,0005 \text{ mm}$
- 3-Punkt-Ausführung $fw \le 0.002 \text{ mm}$

Messweg-Übertragungsfehler (Linearität)

- 2-Punkt-Ausführung fe = 1% des Messweges mind. 0,001 mm
- 2-Punkt-Ausführung-XQ fe = 0,5% des Messweges mind. 0.0005 mm
- 3-Punkt-Ausführung fe = 3% des Messweges mind. 0,002 mm

FB-Ausführung fe = 2% des Messweges mind. 0,001 mm

Messbereichserweiterung (MB-SO) und Sonderausführung kann zu verminderter Messgenauigkeit führen.

Axiale und Radiale Zentrierfehler

Der BMD-Führungszylinder positioniert die Messradien in der Bohrung und sichert die Wiederholgenauigkeit. Bei kurzer Führung und/oder zu großem Spiel zwischen Bohrung und Führungszylinder verschlechtert sich die Wiederholgenauigkeit durch Verkippen und seitlichen Versatz.

Nennmaße und Standardmessbereiche

Bestellmaß BMD (Nennmaß) = Kleinstmaß Bohrung Beispiel: \emptyset 35 D7 = \emptyset 35 +0,08/+0,105 BMD-Nennmaß = 35,08 \emptyset 35 H7 = \emptyset 35 +0/+0,025 BMD-Nennmaß = 35,0

Messbereichserweiterung (MB-SO) (Mehrpreis)

Zum Messen großer Bohrungstoleranzen kann der Standard-Messbereich erweitert werden. Hinweis:

BMD mit MB-SO haben z.T. kleinere Messradien. Es besteht die Gefahr von axialen und radialen Zentrierfehlern. Bei Verwendung von Diamant-Messradien vorher

Die Messbereichserweiterung wie z.B. MB-SO+0,4 gibt an, dass der gesamte Messbereich des BMD 0,4 mm beträgt, ausgehend vom BMD-Nennmaß.

Standard-Fertigungszeiten

BMD-Typ	Arbeitstage
S, D, PK, OR, 2R, S-FB bis Nennmaß 100 mm	10
S, D, PK, OR, 2R, S-FB über Nennmaß 100 mm	15
FB, 3P, L, PK-2Z, MZ, AT0	15
SO-TA, UM, PA, SO-W10, T-BMD	25
ZHML usw.	30

Samstage, Sonn- und gesetzl. Feiertage sowie Betriebsurlaub sind keine Fertigungstage und verlängern entsprechend die Lieferzeit. Zuschlag XQ: plus 5 Arbeitstage

Messbereich, ausgehend vom BMD-Nennmaß

BMD-Serie	Anwendungsbereich	Messbereich
4	Ø 2,98 - 9,0	+ 0,1 mm
6	Ø 7,0 - 20,0	+ 0,15 mm
10	Ø 15,0 - 270,0	+ 0,2 mm
FB6	Ø 7,0 - 16,0	+ 0,15 mm
FB10	Ø 15,0 - 150,0	+ 0,15 mm
3P (Serie 6)	Ø 8,0 - 20,0	+ 0,15 mm
3P (Serie 10)	Ø 15,0 – 100,0	+ 0,2 mm
T-BMD	Ø 2.25 (PA 1.0) - 2.98	+ 0.15 mm

Express-Fertigungszeiten (Mehrpreis)

	BMD-Typ	Arbeitstage	
	S, D, PK, OR, 2R, S-FB bis Nennmaß 100 mm	5-8	
	S, D, PK, OR, 2R, S-FB über Nennmaß 100 mm	8-10	
	FB, 3P, L, PK-2Z, MZ, AT0	8-10	
	SO-TA, UM, PA, SO-W10, T-BMD , ZHML usw.	15	
Lieferzeiten für alle weiteren BMD wie z.B. Mehrstellen-BMD usw. auf			

Zuschlag XQ: plus 5 Arbeitstage

Anfrage.

Messbereichserweiterung MB-SO

BMD-Serie	max. Messbereich (Bestellzusatz)
Serie 4 Ø 2,98 - 4,0	max. MB-SO + 0,15
Serie 4 Ø > 4,0	max. MB-SO + 0,2
Serie 6	max. MB-SO + 0,4
Serie 10 bis Ø 120 mm	max. MB-SO + 0,8
Serie 10 Ø > 120 bis 180 mm	max. MB-SO + 0,6
Serie 10 Ø > 180 bis 220 mm	max. MB-SO + 0,4
Serie 10 Ø > 220 bis 270 mm	max. MB-SO + 0,3
Serie FB10 + FB6	max. MB-SO + 0,3
BMD-3P (Serie 6)	max. MB-SO + 0,3
BMD-Serie 10.3P	max. $MB-SO + 0.4$

Für Option MB-SO empfehlen wir zusätzlich die Option PG (8). Zuschlag XQ: plus 5 Arbeitstage

Messbereichsbegrenzung (MB-B)

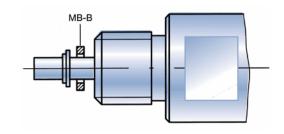
Der Standard-Messbereich kann bei Bestellung von Serie 6, Serie 10 und FB kleiner verlangt werden. Bestell-Zusatz: MB-B und max. gewünschter Messbereich. Bestell-Beispiel mit max. Messbereich von +0,1 mm anstatt 0,2 mm:

BMD-S10-CR-35,0-MB-B+0,1 Unterlegscheiben erlauben auch die nachträgliche Messbereichsbegrenzung. Hierzu bietet DIATEST ein Sortiment an Unterlegscheiben an:

BMD Serie 6 US-6 BMD Serie 10 US-10

Anzeigegeräte, Messkraft

BMD können mit fast allen mechanischen und elektronischen Anzeigegeräten mit Spannschaft Ø 8h und 3/8" eingesetzt werden. Die Messkraft hat einen wesentlichen Einfluss auf die Standzeit und die Messgenauigkeit der BMD.


Empfohlene Messkräfte für Standard-Messbereiche:
BMD Serie 4 ca. 0,3 – 0,4 N
BMD Serie 6 ca. 0,6 – 1,0 N
BMD Serie 10 ca. 0,8 – 1,6 N
Achtung:

Bei Verwendung der Option MB-SO und PG muss evtl. die Messkraft erhöht werden.

Messkraftreduzierung

Für die BMD der Serie 4, zur Messung von z.B. dünnwandigen Werkstücken oder zur Reduzierung der Abnutzung an den Messradien wird nur eine geringe Messkraft benötigt. Oftmals ist es nicht möglich, eine geeignete Messwertanzeige zu bekommen. Hier kann mit speziellen Messuhrhaltern oder Adaptern die Messkraft der Messuhr reduziert werden. Weiterhin bietet die Option PG die Möglichkeit, die Messkontakte von der Bohrungsoberfläche abzuheben.

Ausführung PG	1 8
Halter MH6-73-R	1 24
Halter MH10-150-PG	1 32
Halter MH10-150-R	1 25
Halter MH10-150-F	1 30
Adapter A4-10-F	1 34
Adapter A6-6-F	35
MH4-67-F	1 28
MH6-65-F	<u>a</u> 28

Messradien

Große Messradien (siehe Tabelle MHM) sind wichtig für lange Standzeiten und Voraussetzung beim Messen von Bohrungen mit rauer Oberfäche. Unsere BMD-Messradien erfüllen diese Anforderungen.

Die Wahl des geeigneten Messradien-Werkstoffes hängt vom Werkstückmaterial und von den Verschleißbedingungen ab. BMD-Messradien sind in unterschiedlichen Materialien lieferbar. Falls Sie sich nicht sicher sind, welches Material für Ihr Werkstück geeignet ist, setzen Sie sich mit uns in Verbindung.

Messradien Hartmetall (MHM) Bohrungsmessdorne werden standardmäßig mit Hartmetall-Messkontakten ausgeführt (ohne Mehrpreis).

Hartmetall: ca. 1850 HV Hartmetall sollte nicht verwendet werden, wenn das Werkstück aus Buntmetall, Aluminium und deren Legierungen hergestellt wird. minium sowie deren Legierungen. Die Messkontakte werden aus gehärtetem Stahl hergestellt und anschließend wird eine Hartchromschicht aufgebracht.
Die Hartchromschicht beträgt ca. 0,03 mm. Die Option MCR sollte nicht verwendet werden, wenn starke Verschleißbedingungen vorliegen oder das Werkstückmaterial sehr weich ist. In solchen Fällen kann es sinnvoll sein, auf Diamant-Messradien (MDI) auszuweichen.

Messradien Hartchrom (MCR)

Hartchrom Messkontakte sind geeignet für Buntmetalle und Alu-

Radien der Messkontakte (siehe Tabelle MHM) ab Ø 3,95. Härte: ca. 1000 HV Bestell-Zusatz: MCR Beispiel:

BMD-S10-CR-35,0-MCR

Messradien Keramik (MKE) (Mehrpreis)

Wie auch die Option MCR ist Keramik für Buntmetalle und Aluminium geeignet. Bei sehr weichen Aluminium-Werkstoffen kann es zu einer Verfärbung des Keramikwerkstoffes kommen. Dies hat jedoch keinen Einfluss auf die Funktion oder die Messgenaugkeit.

Härte: Knoop 100g 18000 Korngröße: 0,5 µm Radien der Messkontakte (siehe Tabelle MHM). Für Serie 4 und FB nicht lieferbar Bestell-Zusatz: MKE

Beispiel:

BMD-S10-CR-35,0-MKE

Messradien Hartmetall (MHM)				
BMD-Serie	Durchme	esserbereich	Messradius	
Serie 4	2,98	- 9,0	R = 0,5	
Serie 6	7,0	- 20,0	R = 2,0	
Serie 10	15,0	- 25,0	R = 2,5	
	> 25,0	- 31,0	R = 4,5	
	> 31,0	- 35,0	R = 6,5	
	> 35,0	- 41,0	R = 8,5	
	> 41,0	- 47,0	R = 10,5	
	> 47,0	- 56,0	R = 13,0	
	> 56,0	- 66,0	R = 16,0	
	> 66,0	- 120,0	R = 20,0	
	> 120,0	- 150,0	R = 25,0	
	> 150,0	- 270,0	R = 30,0	
Option MB-SO+0,4 bis	s 0,5		R = 4,5	
Option MB-SO+0,5 un	d mehr		R = 2,5	
BMD-FB6	7,0	- 16,0	R = 2,0	
BMD-FB10	15,0	- 18,0	R = 1,0	
	> 18,0	- 150,0	R = 1,5	
BMD-ME		-	R = 4,5	
BMD-PK (Serie 10)		-	R = 2,5	

7.9

8.0

BMD-PK (Serie 6)

BMD-3P (Serie 10)

BMD-3P (Serie 6)

20.0

20,0

R = 2.0

R = 2,0

R=

2,5

Messradien Rubin (MRU) (Mehrpreis)

Für Buntmetalle, Aluminium und deren Legierungen.

Bei sehr weichen Aluminium-Werkstoffen u.ä. müssen evtl. Diamant-Messradien verwendet werden

Messradien siehe Tabelle MHM Härte Rubin: ca. 2000 HV Bestell-Zusatz: MRU Beispiel:

BMD-S10-35,0-MRU Nicht lieferbar für Serie 4 und FB

Messradien Diamant (MDI) (Mehrpreis)

Für besonders weiche Aluminium- Werkstoffe, starke Verschleißbedingungen (z.B. automatische Messung), hochpolierte Oberflächen usw. Die Messradien werden aus Naturdiamant hergestellt (ab Ø 3,95).

Hinweis: Bei scharfkantigen Werkstücken kann es zur Beschädigung des Messkontaktes kommen. Die Option erweiterter Messbereich MB-SO sollte nur auf Anfrage verwendet werden. MDI nicht lieferbar für Serie FB6 und FB 10. Messradien Kunststoff (MKK) (Mehrpreis)

Diese Messkontakte sollten nur unter speziellen Bedingungen verwendet werden, z.B. für hochpolierte Oberflächen.

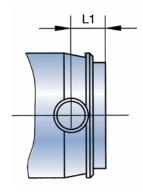
Die Messkontakte bestehen aus Polyamid-Kugeln Ø 4,0 mm. Diese lassen sich vom Kunden selbst auswechseln.

Ab Nennmaß 25,0 mm möglich. Nur Typ S oder D

Maximal möglicher Messbereich: MB-SO+0,3

Bestell-Zusatz: MKK

Beipiel:


BMD-S10-CR-35,0-MKK

Bei starken Verschleißbedingungen können folgende Maßnahmen ergriffen werden:

- Reinigungsluft (L)	1 3
– PG	a 8

- Messkraftreduzierung 🗊 6

Abdeckungen AD (Mehrpreis)

Abdeckungen sollten nur mit Vorsicht verwendet werden. Zum einen wird die Messmechanik geschützt und die Gefahr von Verschmutzung wird verringert. Andererseits können Späne, Kühlwasser und andere Verschmutzung nur schwer entfernt werden. Abdeckungen werden im Standard aus Aluminium hergestellt. Abdeckungen aus Stahl, gehärtetem Stahl usw. auf Anfrage. Je nach Nennmaß und Ausführung werden Abdeckungen eingeklebt oder geschraubt.

Abdeckung für den Typ S und S-FB

Für den Typ S ist eine Abdeckung ab dem Nennmaß 4,0 möglich. Bis zu dem Nennmaß 28,0 vergrößert sich das Maß L1 um 0,5 mm. Für Nennmaß > 28,0 vergrößert sich das Maß L1 um 2,0 mm.

Bestell-Zusatz: AD-S Beispiel:

BMD-S10-CR-35,0-AD-S

Abdeckung für den Typ D
Das Maß L1 vergrößert sich um
1 mm

Bestell-Zusatz: AD-D

Beispiel:

BMD-D10-CR-35,0-AD-D

Abdeckung für den Typ FB
Bei BMD-FB6 vergrößert sich
das Maß L1 um 0,5 mm. Für die
Serie BMD-FB10, Nennmaß
15-28 mm, vergrößert sich das
Maß L1 um 0,5 mm, für Nennmaß über 28 mm um 2 mm.
Bestell-Zusatz: AD-FB
Beipiel:

BMD-FB10-CR-35,0-AD-FB

Messradien Diamant (MDI) BMD-Serie Durchmesserbereich Messradius Serie 4 3,95 9,0 R = 0.5Serie 6 7,0 20,0 R = 2.0Serie 10 15,0 270,0 R = 2.5Bestell-Zusatz MDI Beispiel BMD-S10-CR-35,0-MDI

()) INDUSTRIE 4.0

Zylinder-Untermaß (MZ)

(Mehrpreis)

Die angegebene Herstelltoleranz bei den BMD-Typen S und D (10, 11) für den Führungszylinder wird auf 0,01 mm (±0,005) verringert. Ziel ist es, die axialen und radialen Fehler beim Messen so gering wie möglich zu halten. Diese Option sollte nur angewendet werden, wenn die Bohrungstoleranzen sehr klein sind (bis ca. 0,01 mm).

Zylinder Herstelltoleranz (Kleinstmaß Bohrung –0,01) ±0.005 mm

Bestellzusatz: MZ

Das MZ-Maß liegt i.A. 0,01 mm unter der Kleinstmaß Bohrung (= Nennmaß BMD)

Beispiel:

Kleinstmaß Bohrung = 35,0 MZ-Maß = 34,99 BMD-S10-35,0-MZ-34,99 Der Führungszylinder wird hergestellt mit dem Maß Ø 34,99 ±0,005 mm

Anwendungsbereich Ø 4-100 mm. Andere Durchmesser auf Anfrage.

Bohrungsmesslehre (BM)

Auf Anfrage (Mehrpreis)

Die Bohrungsmesslehre wird als Gutlehrdorn ausgeführt und prüft das Kleinstmaß der Bohrung. Lässt sich die Messlehre in die Bohrung einführen, können das genaue Istmaß und Formfehler auf der Anzeige abgelesen werden. Serie 6 Ø 8,0 – 20,0 Serie 10 Ø >20 – 100,0 Qualität ISO 6 oder Kundenwunsch

BMD-Ausführung ohne Eigenmesskraft (PG)

Ohne Anzeigegerät haben die BMD bereits eine Eigenmesskraft von ca. 0,2 – 1,7 N.

Bei der Option PG – ohne Eigenmesskraft – wird der eingebaute Tastkopf nicht vorgespreizt. Die Messkontakte sind im zusammengefahrenen Zustand unterhalb der Oberfläche des Führungszylinders.

Bevorzugt sollte die Option eingesetzt werden z.B. bei empfindlichen oder rauen Werkstückoberflächen.

Hinweis:

Die Messkräfte der Anzeigegeräte müssen höher gewählt werden, da dem Tastkopf die Vorspannung fehlt.

Die Option PG sollte eingesetzt werden mit folgendem Zubehör:

Halter:

BMD-S10-35,0-PG

Toleriertes Einspannmaß (AT0) (Mehrpreis)

Je nach Montage der Messeinheit kann die Triebnadel unterschiedlich weit herausstehen (Unterschiede bis ca. 1,0 mm). Vor allem beim Finsatz von elektrischen Messtastern muss bei Wechsel des BMD im Halter der Taster neu justiert werden (elektrischer Nullpunkt). Um dies zu vermeiden, wird bei der Option AT0 das Maß vom Anschlagbund bis zur Triebnadel angepasst mit der Toleranz ±0,02. Die Anpassung erfolgt im Einstellring i.A. bei Nennmaß. Voraussetzung hierfür ist, dass ein Einstellring mitbestellt wird.

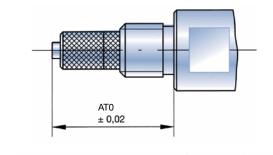
Hinweis:

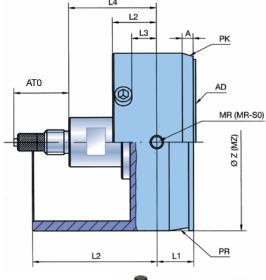
Wenn der BMD mit Zubehör wie z.B. Tiefenverlängerungen, Winkelstücke usw. verwendet wird, muss sich die Option ATO auf die gesamte Einheit beziehen (Zubehör kann dann nicht ausgetauscht werden).

 BMD-Serie
 AT0-Maß

 Serie 4
 12,55 ±0,02

 Serie 6
 12,18 ±0,02


 Serie 10
 21,96 ±0,02


Bestell-Zusatz: AT0 Beispiel: BMD-S10-35,0-AT0

BMD-S10-35,0+TV-15-64-AT0

Hinweis:

Durch mechanische Abnutzung verändert sich das AT0-Maß.

Wichtige maßbezogene Kurzzeichen bei Sonderausführungen

PK Länge A Pilotierkonus 15°/ 30° (🗊 14)

AD Abdeckung AD-S, AD-D ATO Toleriertes Einspannmaß

L1 Maß Mitte Messradien zu BMD-Stirnseite
 L2 Maß Mitte Messradien zu Zylinderende
 L3 Maß Mitte Messradien zu Tiefenanschlag
 L4 Maß Mitte Messradien zu Ende Gewindebund

MB-B Messbereichsbegrenzung
MB-SO Erweiterter Messbereich
MZ Eingeschränktes Z-Maß
MR-SO Sondermessradien
ØZ Istmaß BMD-Zylinder

XQ Höhere Mess-Sicherheit durch reduzierte

Linearitätsabweichung

Bis zu dem Durchmesser 44.0 mm werden die Führungszylinder und die Gewindeanschlussstücke einteilig hergestellt. Bei BMD mit Nennmaß größer 44,0 mm sind Führungszylinder und Gewindeanschlussstück mehrteilig. Die Grundtypen werden i.A. als Handmessgeräte eingesetzt. Für diesen Fall wird der BMD mit einer Einführhilfe - der Pilotierrille - versehen. Diese verhindert das Festklemmen des BMD in der Bohrung. BMD der Serie 4 haben keine Pilotierrille.

Die Grundtypen lassen sich in 3 Gruppen gliedern:

1. Standard-Grundtyp für die allgemeine Anwendung

Aufgrund des kurzen L1-Maßes ist dieser Typ nicht geeignet, direkt am Bohrungsbeginn zu messen (10).

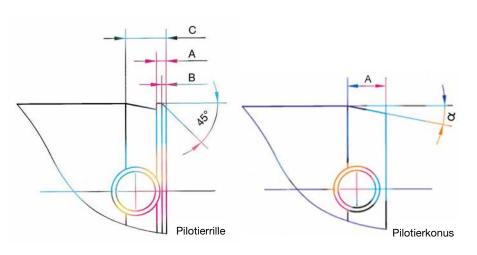
2. Grundtyp für alle Durchgangsbohrungen

Wenn im Werkstück eine Durchgangsbohrung vorhanden ist, sollte immer dieser Typ verwendet werden. Ein weiterer Vorteil ist, dass man aufgrund des vergrößerten L1-Maßes direkt am Beginn der Bohrung sicher messen kann (fil 11).

3. Grundtyp für Sacklochbohrungen

Dieser BMD-Typ sollte immer dann eingesetzt werden, wenn nahe an den Bohrungsgrund gemessen werden soll oder wenn eine kurze Bohrung vorhanden ist. Im Falle einer sehr kurzen Bohrung sollte die Pilotierrille verkleinert oder ganz weggelassen werden (Typ OR).

Der BMD-FB wird in den Ausführungen FB-6 (Anschlussgewinde M6 x 0,75) und FB-10 (Anschlussgewinde M10 x 1) hergestellt und ist ab dem Nennmaß 7,0 mm lieferbar (12). Für kleinere Durchmesser muss der Typ BMD-S4-S-FB verwendet werden.


Einführhilfen

Zum einfachen Einführen in die Bohrung bietet DIATEST die Optionen Pilotierrille (PR) und Pilotierkonus (PK) an. Standardmäßig wird zum Verhindern von Klemmen bei Handmessung die Pilotierrille gefertigt. Bei automatischer Messung oder in Vorrichtungen wird der Pilotierkonus zusammen mit einem Schwimmhalter (siehe 1 47) verwendet. Ist die Bohrung sehr kurz (es kann

keine Pilotierrille verwendet werden), wird nur eine Fase an den Zylinder angebracht (Option OR, siehe **15**).

Maße der Pilotierrille


Serie	N	ennma	ßbe	reich	Α	В	С
6	>	7,0	-	10,0	0,5	0,3	1,9
6	>	10,0	-	20,0	0,6	0,3	2,0
10	>	15,0	-	25,0	0,9	0,5	3,7
10	>	25,0	-	44,0	1,1	0,5	4,6
10	>	44,0	-	70,0	1,5	0,5	6,5
10	>	70,0	-	100,0	2,0	0,5	10,0
10	>	100,0	-	270,0	2,0	0,5	11,0

Maße des Pilotierkonus (PK)

Serie	Nennmaßbereich	Тур	D D		Typ S	
		Α	α	A (S)	A (S-FB)	α
4	> 3,95 - 6,0	1.5	8°	0,4	_	30°
4	> 6,0 - 9,0	3	8°	0,8	-	30°
6	7,0 - 9,0	3,5	8°	2,5	1,1	15°
6	> 9,0 - 20,0	3,5	15°	2,5	1,1	15°
10	15,0 - 70,0	4	15°	3	1,9	15°
10	> 70,0 - 270,0	4,5	15°	3,5	1,9	15°

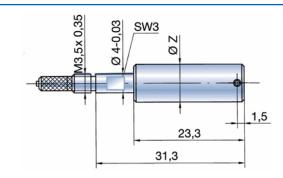
Typ S4-S-FB und FB: auf Nachfrage

Anwendungsbeispiel für BMD 2-Punkt- und 3-Punkt-Ausführung

2-Punkt-Ausführung für Standardanwendung (Bohrungsdurchmesser, Formabweichung), speziell: oval

3-Punkt-Ausführung: nur für Polygon

S4

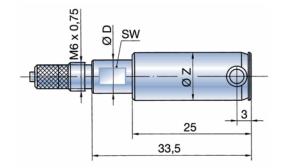

Nennmaß-Bereich: Ø 2,98 - 9,0 mm

Ø Z = Nennmaß - 0,02 / - 0,04

Bestellbeispiel:

Bohrungsdurchmesser	Bestell-Nr.
7 D6	BMD-S4-CR-7,04

Kleinere Durchmesser als 2,98 mit T-BMD (17)


S6

Nennmaß-Bereich: 7,0 - 20,0 mm

Ø Z = Nennmaß - 0,02 / - 0,04

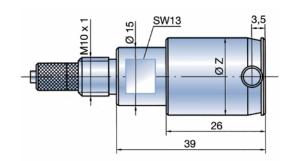
Restellheisniel:

Destelibeispiel.				
E	Bohrungsdurch	nmesser	Bestell-Nr.	
1	0 H6		BMD-S6-CR-10,0	
Ne	nnmaß	7,0 - <8,25	8,25 - 20,0	
Ø	D	6,8	7,9	
SV	V	6	7	

S10 Ø 15 - 44 mm

Nennmaß-Bereich: über 15,0 - 44,0 mm

Nennmaß Ø 15 - 32,0

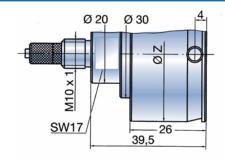

 \emptyset Z = Nennmaß - 0,02 / - 0,05

Nennmaß Ø > 32 - 44,0

 \emptyset Z = Nennmaß - 0,03 / - 0,06

Bestellbeispiel:

Bohrung	Bestell-Nr.
40 - 0,007 / + 0,025	BMD-S10-CR-39,993


S10 Ø > 44 - 70 mm

Nennmaß-Bereich: über 44,0 - 70,0 mm

Ø Z = Nennmaß - 0,03 / - 0,06

Bestellbeispiel:

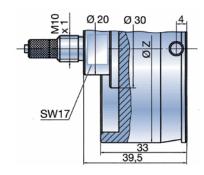
Bohrung	Bestell-Nr.
50 R7	BMD-S10-CR-49,95

S10 Ø > 70 - 270 mm

Nennmaß-Bereich: über 70,0 - 270,0

Nennmaß > 70 - 200

Ø Z = Nennmaß - 0,04 / - 0,07


Nennmaß > 200 - 270

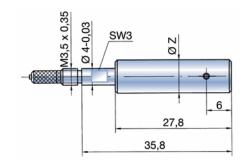
Ø Z = Nennmaß - 0,06 / - 0,10

Bestellbeispiel:

Bohrung	Bestell-Nr.
125 - 0,04	BMD-S10-CR-124,96

Nennmaße über Ø 270 mm auf Anfrage

D4

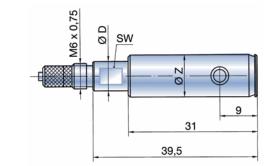

Nennmaß-Bereich: Ø 2,98 - 9,0 mm

Ø Z = Nennmaß - 0,02 / - 0,04

Bestellbeispiel:

Bohrungsdurchmesser	Bestell-Nr.
5 N8	BMD-D4-CR-4,98

Kleinere Durchmesser als 2,98 mit T-BMD (17)


D6

Nennmaß-Bereich: 7,0 - 20,0 mm

Ø Z = Nennmaß - 0,02 / - 0,04

Bestellbeispiel:

Docton Dolopion			
Bohrungsdurch	Bestell-Nr.		
10 + 0.04		BMD-D6-CR-10,0	
Nennmaß	7,0 - <8,25	8,25 - 20,0	
ØD	6,8	7,9	
SW	6	7	

D10 Ø 15 - 44 mm

Nennmaß-Bereich: über 15,0 - 44,0 mm

Nennmaß Ø 15 - 32,0

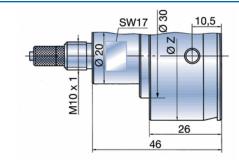
Ø Z = Nennmaß - 0,02 / - 0,05

Nennmaß Ø > 32 - 44,0

Ø Z = Nennmaß - 0,03 / - 0,06

Bestellbeispiel:

Bohrung	Bestell-Nr.
42 K8	BMD-D10-CR-41,97


D10 Ø > 44 - 70 mm

Nennmaß-Bereich: über 44,0 - 70,0 mm

 \emptyset Z = Nennmaß - 0,03 / - 0,06

Bestellbeispiel:

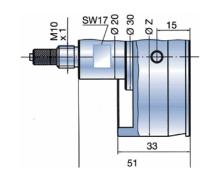
Destelledispici.	
Bohrung	Bestell-Nr.
60 JS8	BMD-D10-CR-59,777

D10 Ø > 70 - 270 mm

Nennmaß-Bereich: über 70,0 - 270,0

Nennmaß > 70 - 200

Ø Z = Nennmaß - 0,04 / - 0,07


Nennmaß > 200 - 270

 \emptyset Z = Nennmaß - 0,06 / - 0,10

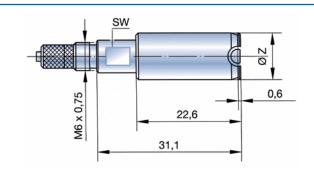
Bestellbeispiel:

Bohrung	Bestell-Nr.
100 H7	BMD-D10-CR-100,00

Nennmaße über Ø 270 mm auf Anfrage

Für BMD Typ FB wird PG-Ausführung empfohlen (Siehe 🗐 8)

FB6 Ø 7,0 - 16,0 mm


Nennmaß-Bereich: über 7,0 - 16,0 mm

Nennmaß Ø 7,0 - 16,0 \emptyset Z = Nennmaß - 0,02 / - 0,04

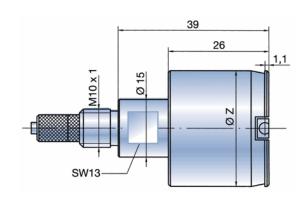
Bestellbeispiel:

Bohrung	Bes	tell-Nr.	II-Nr.		
9 K8	BM	-FB6-CR-8,984			
Nennmaß	7,0 - <8,25	8,25 - 16,0			

Messradien nur in MHM oder MCR möglich

Ø 15,0 - 44,0 mm FB10

Nennmaß-Bereich: über 15,0 - 44,0 mm


Nennmaß Ø 15,0 - 32,0 \emptyset Z = Nennmaß - 0,02 / - 0,05

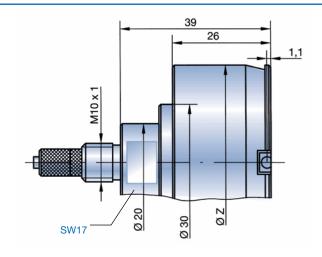
Nennmaß Ø > 32 - 44,0 Ø Z = Nennmaß - 0,03 / - 0,06

Bestellbeispiel:

Bohrung	Bestell-Nr.
42 K8	BMD-FB10-CR-41,973

Messradien nur in MHM oder MCR möglich

FB10 > Ø 44,0 - 70,0 mm


Nennmaß-Bereich: über 44,0 - 70,0 mm

Ø Z = Nennmaß - 0,03 / - 0,06

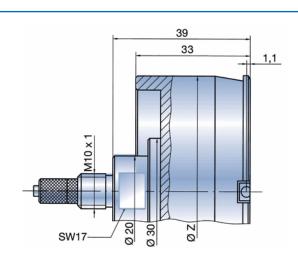
Bestellbeispiel:

Bootonbolopion	
Bohrung	Bestell-Nr.
60 JS8	BMD-FB10-CR-59,977

Messradien nur in MHM oder MCR möglich

FB10 > Ø 70,0 - 150,0 mm

Nennmaß-Bereich: über 70,0 - 150,0 mm


Ø Z = Nennmaß - 0,04 / - 0,07

Bestellbeispiel:

100 H7 BMD-FB10-CR-10	100,00

Messradien nur in MHM oder MCR möglich

Nennmaße über 150 mm auf Anfrage

DIATEST stellt Bohrungsmessdorne ausschließlich mit mechanischer Messwerterfassung her. Die Ausführung L (Luft) dient lediglich der Reinigung des Werkstückes an den Messstellen oder um das Eindringen von Schmutz an den Messkontaktbohrungen zu erschweren. Die Luftausführung wird immer mit einer Abdeckung hergestellt. Das Maß L1 vergrößert sich dadurch. Als Standard liefert DIATEST die Abdeckung aus Aluminium. Alle nicht angegebenen Maße wie bei den Grundtypen S und D. Benötigter Luftdruck 2-3 bar. Zubehör für BMD-L: Halter L-MH10-150 (30), Tiefenverlängerungen L-TV8, L-TV15, L-TV15-A (37/38), Winkelstück L-W10 (Seite 36), Adapter A6-10-L (Seite 35)

L-S6

Ø 7,0 - 20 mm

L-D6

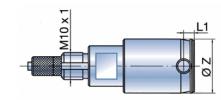
Nennmaß-Bereich: 7,0 - 20,0 mm

Abdeckungen bei der Serie L-S6 sind geklebt

Typ S L1 = 3,5 mmTyp D L1 = 9,5 mm

L-S10

> Ø 15 - 44 mm


L-D10

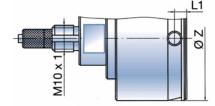
Nennmaß-Bereich: 15,0 - 44,0 mm

Abdeckungen bei der Serie L-S10 bis Nennmaß 28,0 mm sind geklebt.

Ausführung S10 > 28 mm und Typ D sind geschraubt

Typ S Ø 15,0 - 28,0 mm L1 = 4,0 mm Ø > 28,0 - 44,0 mm L1 = 5,5 mm Typ D L1 = 10,5 mm

L-S10


> Ø 44 - 70 mm

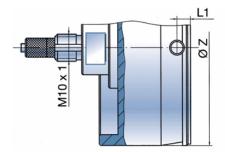
L-D10

Nennmaß-Bereich: 44,0 - 70,0 mm

Abdeckung geschraubt

Typ S L1 = 6.0 mmTyp D L1 = 11.5 mm

L-S10

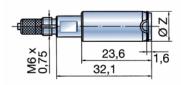

Ø 70 - 270 mm

L-D10

Nennmaß-Bereich: 70,0 - 270,0 mm

Abdeckung geschraubt

Typ S L1 = 6.0 mmTyp D L1 = 16.0 mm

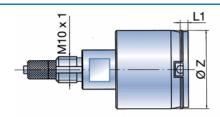


L-FB6

Ø 7 - 16 mm

Nennmaß-Bereich: 7,0 - 16,0 mm

Abdeckung geklebt


L-FB10

Ø 15 - 150 mm

Nennmaß-Bereich: 15,0 - 150,0 mm

Abdeckung bis Nennmaß 28 geklebt, über 28 geschraubt.

 \emptyset 15 - 28 L1 = 1,6 mm \emptyset > 28 - 150 L1 = 3,1 mm

C

BMD für die automatische Messung -Typ PK- werden anstelle der Pilotierrille mit einem 30° bzw.16° Pilotierkonus versehen. Mit den entsprechenden Schwimmhaltern können die BMD in Messvorrichtungen, Transferstraßen, CNC-Maschinen, Prüfautomaten usw.

eingesetzt werden (46-49). Wenn möglich, sollte bevorzugt ein Typ D eingesetzt werden:

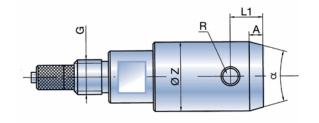
- Größerer Pilotierkonus (= größerer Schwimmbereich)
- Die Messkontakte sind hinter

dem Pilotierkonus. Dadurch können die Messkontakte besser in die Bohrung eintauchen (speziell bei MB-SO) und der Verschleiß wird verringert. Bei dem Typ S befinden sich die Messkontakte teilweise im Bereich des Pilotierkonus. Bei der Ausführung mit Luftfreiblasung – L – ist zu beachten, dass sich das Maß L1, gemäß den Angaben ⋒ 7, für die Abdeckungen vergrößert.

Serie	Nennmaß-Bereich		Тур D			Typ S		2Z Nennmaß	Messradius	Gewinde
		Α	В	α	Α	В	α	minus	R	G
4	3,95 - 6,0	1,5	9	16°	0,4	8	60°	0,2	0,5	M 3,5 x 0,35
4	> 6,0 - 9,0	3	9	16°	0,8	8	60°	0,2	0,5	M 3,5 x 0,35
6	7,9 - 9,0	3,5	12	16°	2,5	11	30°	0,3	2	M 6 x 0,75
6	> 9,0 - 20,0	3,5	12	30°	2,5	11	30°	0,3	2	M 6 x 0,75
10	15,0 - 70,0	4	14	30°	3	13	30°	0,4	2,5	M 10 x 1
10	> 70,0 - 270,0	4,5	18	30°	3,5	17	30°	0,4	2,5	M 10 x 1

PK

BMD mit Pilotierkonus


Standard-Ausführung (ohne Mehrpreis)

Basistypen: S, D, L Nennmaß-Bereiche: 3,95 - 270 mm

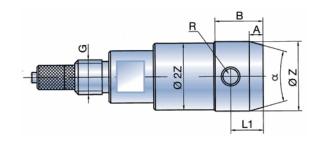
Bestellzusatz: PK

Bestellbeispiel: BMD-D10-CR-30,0-PK

Ø Z wie bei Grundtypen

PK-2Z

BMD mit Pilotierkonus und abgesetztem Zylinder (Mehrpreis)


Der abgesetzte Zylinder reduziert die Klemmgefahr bei Winkelfehlern des BMD zur Bohrungsachse.

Basistypen: S, D, L
Nennmaß-Bereiche: 3,95 - 270 mm
Bestellzusatz: PK-2Z

Bestellbeispiel:

BMD-D10-CR-30,0-PK-2Z-Ø 2Z = 30 - 0,4 mm

Ø Z wie bei Grundtypen

PK-ZHML

BMD-PK mit Hartmetall-Leisten (PK-ZHML)

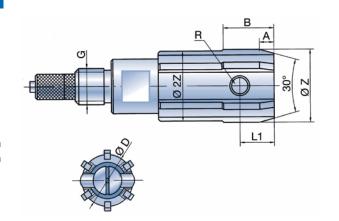
(Mehrpreis)

Hartmetall-Leisten reduzieren die Klemmgefahr bei verschmutzten Bohrungen (z.B. Späne).

Basistypen: S, D, L

Nennmaß-Bereiche: Serie 6 Ø 11 - 20 mm

Serie 10 Ø 18 - 270 mm


Ø D Serie 6 Nennmaß - 2 mm

Serie 10 Nennmaß - 3 mm

Ø Z wie bei Grundtypen BMD-Zylinder in Ausführung OCR

Bestellzusatz: PK-ZHML

Bestellbeispiel: BMD-D10-OCR-30,0-PK-ZHML

Sondertypen werden i.A. speziell auf das Messproblem des Kunden angepasst. Es handelt sich entweder um Sonderkonstruktionen (mit dem Hinweis: Auf Anfrage) oder um Veränderungen am Führungs- zylinder der Grundtypen (mit dem Hinweis: Mehrpreis). Sonderkonstruktionen müssen generell angefragt werden. Für

die Anfrage senden Sie uns bitte eine genaue Beschreibung des Messproblems und eine aussagekräftige Zeichnung zu, auf der das Messproblem dargestellt ist. U.U. ist auch ein Musterwerkstück notwendia.

S-FB

BMD für Sacklochbohrungen (Mehrpreis)

Um näher an den Bohrungsgrund messen zu können, wird hier der Führungszylinder des Typs S oder FB gekürzt.

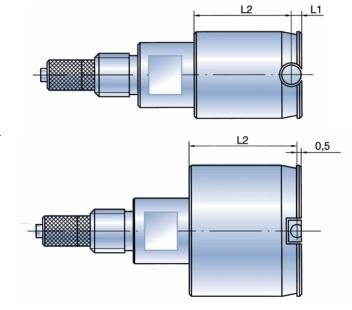
L1-Maße, die zwischen dem Mindestmaß für L1 und dem Standard liegen, müssen auf der Bestellung angegeben werden.

S-Typ Nennmaß-Bereich: Ø 4,0 - 270,0 mm

Vorteil des Typens S-FB

Es werden die großen Messradien des Typs S verwendet. Dadurch wird z. B. das Einführen in die Bohrung verbessert und der Verschleiß verringert.

Ø Z = Nennmaß wie Typ S. L2 wie bei Typ S


BMD-Typ	Mindestmaß für L1
Serie 4	0,6 mm (ab Ø 4,0)*)
Serie 6	1,6 mm
Serie 10	2,4 mm
*) bei Ø < 4,0 als T-BN	MD-FB möglich
Serie 10 – 3P: L1=3,0	
Serie 6 – 3P: L1=2,0	

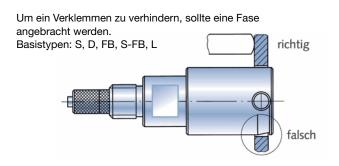
FB-S-Typ Nennmaß-Bereich: Ø 15,0 - 150,0 mm

Ø Z = Nennmaß wie Typ FB. Mindestmaß L1 = 0,5 mm Bei L1 von 0,5 mm ist der Messkontakt scharfkantig. Das führt zu höherem Verschleiß. Wenn auch das Werkstück scharfkantig ist, sollte unbedingt die Option PG (■ 8) verwendet werden. Ausführung nur als BMD-FB10.

Bestellzusatz: S-FB

Bestellbeispiel:	
Bohrung	Bestell-Nr.
28 H7	BMD-S10-CR-28,0-
gewünschtes L1 = 3,0	S-FB-L1 = 3,0

OR


BMD ohne Pilotier-Rille (ohne Mehrpreis)

Bei sehr kurzen Bohrungen hat der Führungszylinder aufgrund der Pilotierrille keine oder nur ungenügende Führungseigenschaften mehr.

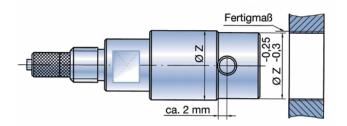
Bestellzusatz: OR

Bestellbeispiel:	
Bohrung	Bestell-Nr.
30 H6	BMD-S10-CR-30,0- OR-Fase 0,5 x 45°

Hier ist es sinnvoll, die Pilotier-Rille nicht anzubringen.

UM

BMD für Untermaß-Messung (Mehrpreis)


Racietypen: S. D.

Nennmaße 7,9 - 270 mm

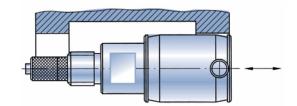
Schon vor dem Erreichen des Fertigmaßes lässt sich der BMD bis zum Ende des vorderen Zylinders einführen und so die Zustellung der Maschine ermitteln. Ab dem Fertigmaß kann der komplette BMD in die Bohrung eingeführt werden.

Dasistypen. 3, D	Destellzusatz. OW
Bestellbeispiel:	
Bohrung	Bestell-Nr.
30 H7	BMD-S10-CR-30,0-UM

Restallzusatz: I IM

2R

2PK BN


BMD mit 2 Pilotier-Rillen / BMD mit 2 Pilotierkonussen (Mehrpreis)

Bei z.B. gerippten Werkstücken oder Bohrungen mit Freimachung verhindert diese Option beim Zurückziehen des BMD ein Verklemmen.

> Basistypen: S, D, FB, S-FB, L Nennmaß-Bereich: 7,0 - 270 mm Bestellzusatz: 2R bzw. 2PK

Bestellbeispiel:

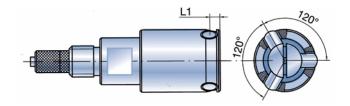
Bohrung	Bestell-Nr.
10 H6	BMD-S6-CR-10,0-2R

3P

3-Punkt BMD (Mehrpreis)

3-Punkt BMD werden benötigt, um ein Innenpolygon als Formfehler zu messen.

Die Teilung zwischen den Messkontakten ist 3 x 120°. Andere Teilungen auf Anfrage.


Der innenliegende Tastkopf ist pendelnd gelagert, damit sich die Messmechanik in der Bohrung zentrieren kann.

Basistypen: S, D, L Nennmaß-Bereich: 8,0 - 100 mm

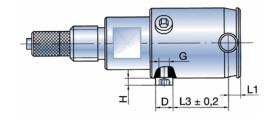
Bestellzusatz: BMD-S10-CR-35,0-3P

Die Baumaße des BMD entsprechen denen der Basistypen der Serie 6 und 10.

Konstruktionsbedingt liegt die Messgenauigkeit des 3-Punkt-BMD etwas unter der des 2-Punkt-BMD (siehe 15). Daher sollte bevorzugt ein 2-Punkt-BMD verwendet werden.

SO-TA

BMD mit Tiefenanschlag (Mehrpreis)


3 gehärtete Anschlagschrauben im Winkel von 3 x 120°.

Basistypen: S, D, S-FB, L-FB, FB

Bestellzusatz: SO-TA-L3

Bestellbeispiel: BMD-D10-CR-28,0-SO-TA-L3 = 11

Das Maß L3 bei Bestellung immer angeben.

Tabelle für SO-TA Nenn-Ø Тур max. L3 Тур max. L3 G 12 - 20 S6 D6 16 МЗ 16 S10 20 - 32 16.5 D10 16.5 5 2 МЗ > 32 - 44 S10 16.5 D10 16,5 7,5 3.5 M5 > 44 - 70 S10 14.5 D10 8 7,5 3,5 M5 > 70 - 270 S10 21,5 D10 10,5 7,5 3,5 M5

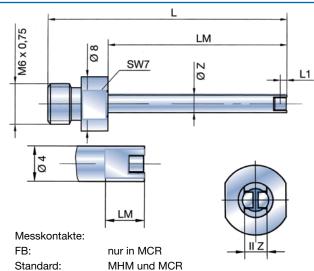
T-BMD

BMD für kleine Maße (Mehrpreis)

Ausführungen: Standard, FB und PA

Nennmaß-Bereiche:

Standard, FB $\emptyset > 2,0 - 3,0$ PΑ II 1.0 - 3.0


Ø Z = Nennmaß -0,02/-0,04

Ausführung Standard, FB

Nennmaß	LM	L1	L1 (FB)	L
Ø 2,0 - 2,50	21,5	1,1	0,5	30,5
Ø > 2,50 - 3,0	27,0	1,4	0,5	35,8

Ausführung PA

Nennmaß	LM	L1	L1 (FB)	L
II 1,0 - 1,5	4,5	0,8	-	24,7
II > 1,5 - 2,49	4,5	1,1	0,5	30,5
II > 2,49 - 3,0	4,5	1,4	0,5	35,8

PA: mit MCR, ab II 1,51 auch MHM

Messbereich: + 0,15 mm

Bestellbeispiel: T-BMD-2,55 · T-BMD-PA-2,38

ZKUL

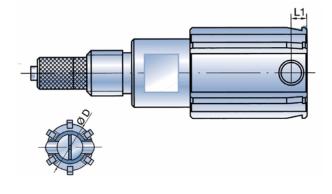
BMD mit Kunststoffleisten (auf Anfrage)

Für besonders empfindliche Oberflächen (z. B. polierte Hydraulikbohrungen usw.). Als Messkontakte können evtl. MDI oder MKK notwendig sein.

> S, D, L Basistypen:

Nennmaß-Bereiche: Serie 6 Ø 11 - 20 mm

Serie 10 Ø 18 - 270 mm


Ø D Serie 6 Nennmaß - 2 mm

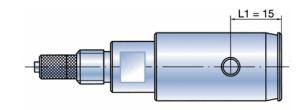
Serie 10 Nennmaß - 3 mm

Ø Z wie bei Grundtypen

Bestellzusatz: PK-ZKUL

Bestellbeispiel: BMD-D10-OCR-30,0-PK-ZKUL

SO-DZL


BMD mit langem Zylinder (Mehrpreis)

Bei Ausführung mit Luftfreiblasung - L - vergrößert sich das Maß L1 um 1 mm.

> D, L Basistypen:

Nennmaß-Bereich: 3,95 - 44 mm

Bestellbeispiel BMD-S6-CR-10,0-SO-DZL

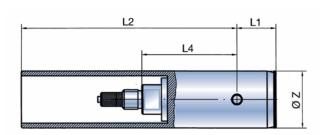
SO-ZL

BMD mit verlängertem Zylinder (auf Anfrage)

Basistypen: S, D, L

Nennmaß-Bereich: Ø 3,95 - 270 mm

Bei Anfrage bitte die folgenden Längen angeben


L1 max, 200 mm

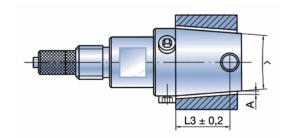
L2 bis Nennmaß 23,0 max. wie L4 Nennmaß > 23,0 max. 200 mm

L4 nicht veränderbar

Bestellbeispiel:

BMD-S10-CR-39,997-SO-ZL-L1 = 25-L2 = 50

Bei großen L2-Maßen ist evtl. eine Tiefenverlängerung TV15 notwendig.


SO-KO

BMD für konische Bohrungen (auf Anfrage)

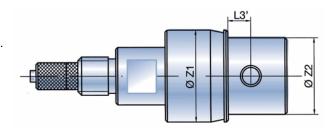
BMD-SO-KO müssen generell mit einem Tiefenanschlag verwendet werden (z. B. SO-TA usw.). Bei Bestellung in Verbindung mit SO-TA bitte das Maß L3 angeben. Die Fertigung des BMD ist nur möglich mit einem Einstellmeister oder einem guten Musterwerkstück, das dem Toleranz-Minimum entspricht.

Das Spiel A beträgt ca. 0,05 mm bei Kleinstmaß Bohrung. Anfrage bitte mit Werkstückzeichnung

Basistypen: S, D, FB, S-FB, L Nennmaß-Bereich: 4 - 100 mm Max. Winkel: ca. 30°

SO-2Z

BMD mit 2 Führungszylindern (auf Anfrage)

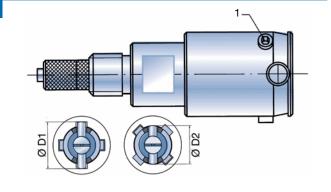

Der Typ SO-2Z dient zum Reduzieren der Zentrierfehler bei kurzen Bohrungen durch Mitbenutzung einer zweiten Bohrung.

Basistypen: S, D, FB, S-FB, L Nennmaß-Bereich: 3,95 - 270 mm

Bestellbeispiel:

BMD-S10-CR-49,95-SO-2Z- \emptyset Z1 = 55,0-L3' = 5

Bei Bestellung immer angeben: Ø 1, Ø 2, L3'


SO-GL

BMD für Längsnuten (auf Anfrage)

Die Führungsnasen (1) sichern die radiale Position der Messradien in der Nut oder in der Kernbohrung.

Für die Anfrage bitte Datenblatt SO-GL anfordern.

Basistypen: S, D, FB, L Nennmaß-Bereich: 6,0 - 270 mm

SO-FB-SO

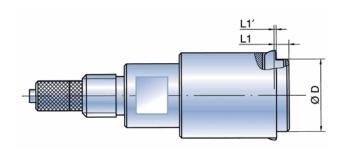
BMD-FB für Stufenbohrungen (auf Anfrage)

Dieser Typ eignet sich besonders, wenn bei einer Stufenbohrung nahe am Stufenabsatz gemessen werden soll. Die großen Messradien (R=2,5) eignen sich auch für Bohrungen mit rauer Oberfläche*.

Bei Bestellung bitte angeben:

L1': Mitte Messkontakt bis Absatz (min. 0,5 mm)

L1 : Standard wie bei Typ S oder D

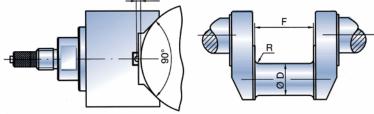

ØD: Durchmesser des abgesetzten Zylinders

Basistypen: S, D Nennmaß-Bereich: 7 - 270 mm

Bestellbeispiel:

BMD-S10-CR-35,0-SO-FB-SO-L1' = 0,5-ØD = 33,0

*Wenn möglich, Ausführung PG (8) verwenden.


SO-KW

BMD für Kurbelwellen (auf Anfrage)

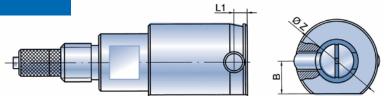
Zum Messen des Wangenmaßes F der Pleuel-Lagerstellen bei Kurbelwellen, für Nockenwellen usw.

> Nennmaß-Bereich: 8 - 100 mm Ausführung: Typ S oder FB

Abstand Welle - Messpunkt X: Typ FB: X min. 1,6 mm Typ S: X min. 2,9 mm

Für Angebot bitte angeben:

Maße F (mit Toleranz), R, Ø D, X oder Datenblatt SO-KW anfordern.


Ausführung nur in OCR.

SO-SZ

BMD mit Sonderzylinder (auf Anfrage)

Anfrage bitte mit Werkstückzeichnung

Basistypen: S, D, FB, L, S-FB

SO-PA

BMD für parallele Abstände in Sonderausführung (auf Anfrage)

Für Abstandsmessung in Werkstücken, bei denen die Standard-BMD-PA nicht verwendet werden können.

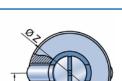
> S, D, FB, L, S-FB Basistypen: Nennmaß-Bereich: 4 - 270 mm

Ausführung SO-PA nur in OCR.

EMD

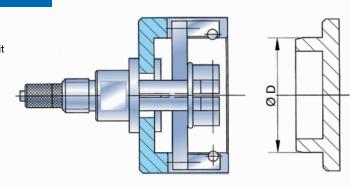
BMD für Einstichmessung (auf Anfrage)

Messdorn zum Messen von Einstichen in Werkstücken ab 20 mm. Messbereich von 3,5 bis 10 mm (abhängig vom Nennmaß). Messkontakte in MHM und MCR. Anfrage bitte mit Werkstückzeichnung

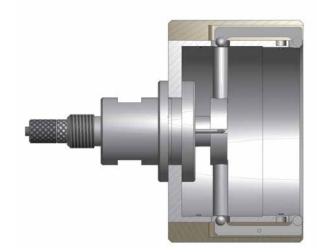

Messbereichstabelle

Bohrungsdurchmesser	Max. Messweg auf Ø bezogen (ergibt Einstichdurchmesser)
20 - 21	3,5
> 21 - 22	4,0
> 22 - 24	4,5
> 24 - 26	5,0
> 26 - 28	5,5
> 28 - 30	6,0
> 30 - 34	7,0
> 34 - 36	8,0
> 36 - 40	9,0
> 40	10,0

Anmerkung: Die Tabelle stellt nur eine grobe Richtlinie dar, von der je nach Werkstückform abgewichen werden kann!



BMD-OD


BMD für Außenmessung (auf Anfrage)

Messdorn zum Messen von Außendurchmessern mit \varnothing D ca. 20 bis 100 mm.

Max. Messtiefe Variante 1: 10 mm

Max. Messtiefe Variante 2: 30 mm

Anfrage bitte mit Werkstückzeichnung. Zur Fertigung benötigen wir ein Musterwerkstück oder einen Einstellmeister.

BMD-IV

Ø Zylinder 10 - 100 mm

BMD für Innenverzahnungen (auf Anfrage)

Messen von Maß zwischen den Kugeln (Mi)

Der Führungszylinder ist auf den Innen-Ø der Verzahnung ausgelegt. Führungsnasen verhindern ein Verdrehen des BMDs im Werkstück.

Anfrage mit Werkstückzeichnung und Verzahnungsdaten: Maß Mi, Kugeldurchmesser und Zähnezahl

Für die Produktion wird ein Gutwerkstück oder ein vollverzahnter Einstellmeister benötigt. Fertigung ohne Musterwerkstück oder vollverzahnten Einstellmeister ist nicht möglich!

Ausführung: S und D-Typ, Sonderzylinder ab Ø 10mm

BMD des Typs PA sind eine Mischkonstruktion aus BMD und Tastkopf: Abgeänderte Tastköpfe aus unserem Tastkopfprogramm werden in einen Führungskörper montiert.

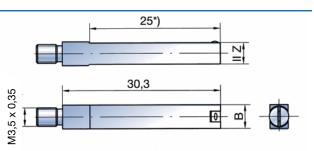
Der Führungskörper aus gehärtetem Stahl (ca. 62 HRC) ist nur in Ausführung OCR lieferbar. Messkontakte in MCR und abhängig von der Größe auch in MHM. Zu beachten ist, dass die Triebnadel nicht inklusive ist und dazu bestellt werden muss.

Benötigtes Zubehör:

- BMD PA4 Messuhrhalter MH6-51 (@ 24), Adapter A4-6 (34) oder Tiefenverlängerung TV4 (37)
- BMD-PA6 Adapter A6-10-L-PA, ansonsten wie BMD Serie 6

Nennmaß	Messkraft
3,0 - 4,2	0,8 - 1,0 N
4,2 - 9,5	1,0 - 1,5 N
9,5 - 20,5	1,2 - 1,8 N
20.5 - 30.0	15-20N

BMD-PA4

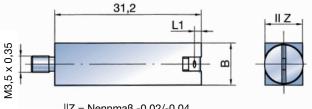

Nennmaß-Bereich: 3,0 - 4,9 mm

Messkontakte: MCR, MHM (nur S-Typ bis 4,0)

Führungskörper: nur in OCR S, FB Ausführung: L1: BMD-PA4-S-MCR L1 = 1.4 mmBMD-PA4-FB-MCR L1 = 0.5 mm

||Z = Nennmaß -0.02 / -0.04 B = Nennmaß + 1 mm Messbereich: 0.25 mm

Bestellbeispiel: BMD-PA4-S-MCR-4,35

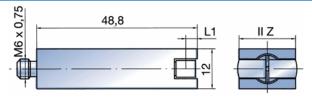

* Das Längenmaß 25 ist nur bei Abständen kleiner 4 mm vorhanden.

BMD-PA4

Nennmaß-Bereich: > 4,9 - 9,5 mm

Messkontakte: MCR, MHM (nur Typ S)

Führungskörper: nur in OCR Ausführuna: S. FB L1: BMD-PA4-S-MCR L1 = 1.8 mmBMD-PA4-S-MHM L1 = 1.8 mmBMD-PA4-FB-MCR L1 = 0.8 mm


||Z = Nennmaβ -0.02/-0.04

B = Nennmaß + 1 mm, Messbereich: 0,25 mm Bestellbeispiel: BMD-PA4-S-MHM-6,3

BMD-PA6

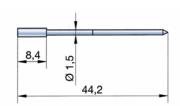
Nennmaß-Bereich: > 9,5 - 30,00 mm

MCR, MHM Messkontakte: Führungskörper: nur in OCR Ausführung: S, FB L1: BMD-PA6-S-MCR L1 = 3,5 mmBMD-PA6-S-MHM L1 = 3,5 mmBMD-PA6-FB-MCR L1 = 1,0 mmBMD-PA6-FB-MHM L1 = 1,0 mm

||Z = Nennmaß -0,02/-0,05

B = 12,0 mmMessbereich: 0,3 mm

Triebnadeln für BMD-PA4

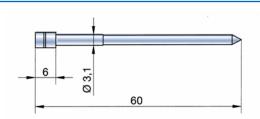

Hartmetall-Triebnadeln (ohne Einstich) für BMD-PA4-S-MCR und BMD-PA4-S-MHM =

Bestell-Nr. NT-HM-PA1-150

Hartmetall-Triebnadeln (mit 2 Einstichen) für

BMD-PA4-FB-MCR =

Bestell-Nr. NT-FB-HM-PA1-150


Triebnadeln für BMD-PA6

Hartmetall-Triebnadeln (mit einem Einstich) für BMD-PA6-S-MCR und BMD-PA6-MHM =

Bestell-Nr. NHM 3-310

Hartmetall-Triebnadeln (mit 2 Einstichen) für BMD-PA6-FB-MCR und BMD-PA6-MHM =

Bestell-Nr. NFB-HM3-310

Mehrstellenmessdorne können bis zu 8 Bohrungsmaße gleichzeitig erfassen. Je nach Ausführung können die ME-BMD als Handmessdorn (mit Pilotierrille PR) oder für die automatische Bohrungsmessung (mit Pilotierkonus PK) hergestellt werden.

Alle Mehrstellenmessdorne sind Sonder-BMD und werden speziell auf die jeweilige Messaufgabe abgestimmt. Bei Anfragen benötigen wir daher alle Angaben zu dem Werkstück wie:

- Zeichnung oder Zeichnungsausschnitt der Bohrung
- Material des Werkstückes
- Lage der Messpunkte In nachfolgender Tabelle sind die zur Zeit realisierbaren Haupmaße,

Abstände und Lagen der Messkontakte angegeben. Unter bestimmten Voraussetzungen kann hiervon abgewichen werden. Bitte fragen Sie nach! Eigenschaften der Mehrstellen-

Eigenschaften der Mehrstellenmessdorne:

- Messradius R = 4,5 mm, bei Ausführung mit Pilotierkonus (PK) R = 2,5 mm
- Linearität und Wiederholgenauigkeit kann vom Standard abweichen (aufgrund unsymmetrischer Anordnung der Messmechanik)
- Zylinderoberfläche hartverchromt
- Stahldeckel L = 1,0 mm
- mit Tiefenmessung im Bund oder im Boden möglich

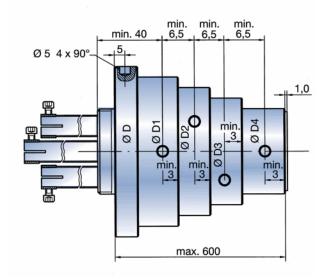
BMD-ME

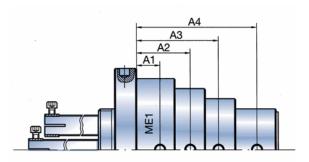
Hauptmaße

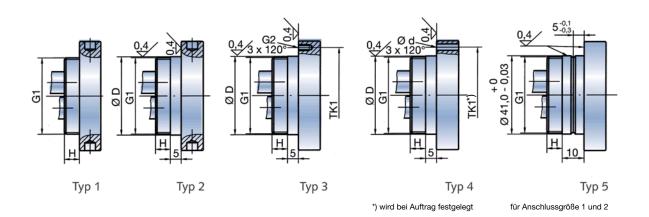
Wie z.B. Mindestlängenmaße (6,5 mm) sowie Mindestdurchmesser der einzelnen Führungszylinder können bei bestimmten Voraussetzungen unterschritten werden. Die radiale Anordnung der Messkontakte kann nachfolgender Tabelle entnommen werden.

Unterschiedliche Anschlusstypen siehe unten.

Anfrage


Für die Ausarbeitung eines Angebotes benötigen wir immer eine Werkstückzeichnung mit den folgenden Angaben:


- Abstand der Messebenen zu einer Bezugskante des Werkstückes
- 2. Radiale/Winkelstellung der Messpunkte entsprechend der Tabelle
- 3. Bohrungsdurchmesser und Toleranzen mit gewünschtem Messbereich
- 4. Anschlusstyp


Anschlusstypen

Je nach Anwendungsart (Handmessung, Einbau in Vorrichtung usw.) können die Mehrstellen-BMD mit unterschiedlichen Anschlusstypen ausgeführt werden.

Je nach Anzahl der Messebenen sind die Anschlussgewinde ebenfalls unterschiedlich (siehe **1**23). Die am häufigsten gewählten Anschlüsse sind im Folgenden aufgeführt. Andere Anschlussbaumaße und Ausführungen sind auf Anfrage möglich. Der Anschlusstyp 5 mit Anschlussgröße 2 wird benötigt, wenn der BMD-ME mit dem Schwimmhalter für Mehrstellen-BMD (SH-BMD-ME) eingesetzt wird.

Anschlussmaße Mehrstellen-BMD

Anschlussgröße	Gewinde (G1)	Gewindehöhe (H)	Ø D + 0/-0,03	Gewinde (G2)	Teilkreis (TK1)	
1	M35 x 1,5	7 mm	36 mm	M5	52 mm	
2	M40 x 1,5	8 mm	41 mm	M5	57 mm	
3	M52 x 1,5	10 mm	53 mm	M6	70 mm	

Die folgende Tabelle stellt die derzeit möglichen Kleinstdurchmesser der Führungszylinder für die einzelnen Messebenen dar.

In Einzelfällen kann von diesen Maßen auch abgewichen werden.

Mindestdurchmesser für Mehrstellen-BMD

Baugröße	kleinstmöglicher Zylinder-Ø				Winkelstellu	Winkelstellung der Messpunkte im BMD-Zylinder				
	ØD	Ø D1	Ø D2	Ø D3	Ø D4	ME 1	ME 2	ME 3	ME 4	
BMD-1ME	37,5	15				0-180°				1
BMD-2ME-13-10	37,5	22	22			0-180°	0-180°			1
BMD-2ME-13-12	37,5	30	30			0-180°	0-180°			1
BMD-2ME-15-9	37,5	32	24			0-180°	0-180°			1
BMD-2ME-15-18	37,5	33	30			0-180°	90-270°			1
BMD-2ME-20-1	37,5	35	35			0-180°	90-270°			1
BMD-2ME-20-2	37,5	35				0-90-18	30-270°			1
BMD-3ME-13	37,5	21	21	21		0-180°	120-300°	60-240°		1
BMD-3ME-20	37,5	35	35	35		0-180°	120-300°	60-240°		1
BMD-3ME-0-24-1	46	46	39	8		0-180°	0-180°	0-180°		2
BMD-4ME-20-1	42,5	42	42	42	35	0-180°	0-180°	90-270°	90-270°	2
BMD-4ME-24-26-2	42,5	39	8			beliebig z.B. 0-180°	0-180°			2
BMD-4ME-24-26-3	42,5	41	41	41	41	0-180°	90-270°	45-225°	135-315°	2
BMD-4ME-24-26-4	42,5	39				0-90-18	30-270°			2
BMD-4ME-24-26-5	42,5	41	41			0-90-18	30-270°	45-135-	225-315°	2
BMD-4ME-24-26-6	42,5	41	41	41		0-90-18	30-270°	45-225°	135-315°	2
BMD-8ME-20-38	60	60	60	60	60	0-180°	0-180°	90-270°	90-270°	3

Baugröße	kleinstmöglicher Zylinder-Ø				Winkelstellung der Messpunkte im BMD-Zylinder				Anschlussgröße
	Ø D5	Ø D6	Ø D7	Ø D8	ME 5	ME 6	ME 7	ME 8	
BMD-8ME-20-38	60	60	60	53	45-225°	45-225°	135-315°	135-315°	3

BMD-ME

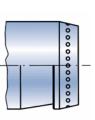
Einführhilfe

Je nach Einsatzfall werden die Mehrstellen-BMD ausgelegt:

- Pilotierrille bei Handmessung (siehe 🗐 9)
- Pilotierkonus 30° bei automatischer Messung (siehe 🗐 9)

Die Pilotierrille/der Pilotierkonus muss nicht auf dem ersten Zylinder angebracht werden.

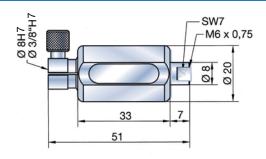
Blasluftkonus


Mit separatem Luftanschluss für Luftdruck bis 10 bar zum Entfernen grober Schmutzpartikel. Der Blasluftkonus hat eine von der Messmechanik getrennte Luftkammer.

Achtung:

Der Blasluftkonus ersetzt keine Reinigungsstation. Ist das Werkstück zu stark verschmutzt, müssen zusätzliche Maßnahmen ergriffen werden.

Messuhrhalter MH6 sind in unterschiedlichen Ausführungen erhältlich. Sie werden eingesetzt für BMD der Serie 6 und mit Adapter (1) 34, 35) für BMD der Serie 4 (Gewinde M3,5 x 0,35)

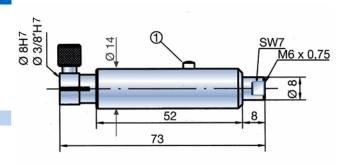

MH6-51

Standard-Messuhrhalter für BMD der Serie 6, ohne Triebstift

Ausführung mit Klemmung

Klemmbohrung	Bestell-Nr.
8H7	MH6-51
3/8"H7	MH6-51-Z

Halterkern hartverchromt

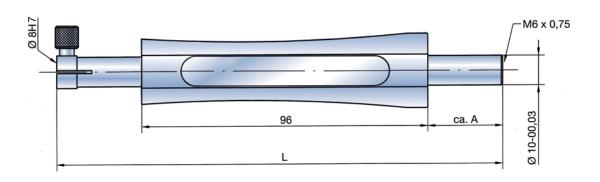

MH6-73-R

Messuhrhalter mit Anlüftung

Durch Betätigen der Drucktaste (1) wird der Messstift des Anzeigegerätes von der Triebnadel des BMD abgehoben. Es wirkt keine Messkraft mehr auf den BMD. Siehe auch Ausführung "PG", 🗊 8

Ausführung mit Klemmung

Klemmbohrung	Bestell-Nr.
8H7	MH6-73-R
3/8"H7	MH6-73-R-Z


MH6-

Messuhrhalter für BMD der Serie 6, temperaturstabilisiert

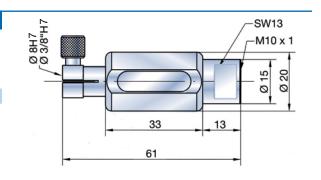
Der Halter ist generell mit 2 Beschriftungsleisten ausgestattet.

Ausführung

Klemmbohrung	Bestell-Nr.	Länge L	Länge A
8H7	MH6-150	150 mm	25 mm
8H7	MH6-200	200 mm	75 mm
8H7	MH6-300	300 mm	175 mm
3/8"H7	MH6-150-Z	150 mm	25 mm

Messuhrhalter MH10 sind in unterschiedlichen Ausführungen erhältlich. Sie werden eingesetzt mit den Bohrungsmessdornen der Serie 10.

Mit Hilfe eines Adapters (siehe 34, 35) lassen sich die Halter auch für die BMD der Serie 6 (Gewinde M6 x 0,75) und der Serie 4 (Gewinde M3,5 x 0,35) verwenden.

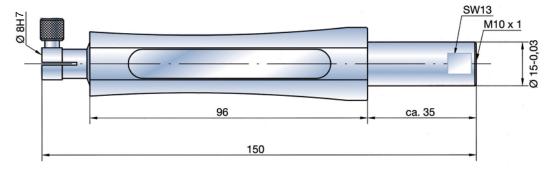

MH10-61

Standard-Messuhrhalter für BMD der Serie 10, ohne Triebstift

Ausführung mit Klemmung

Klemmbohrung	Bestell-Nr.
8H7	MH10-61
3/8"H7	MH10-61-Z

Halterkern hartverchromt

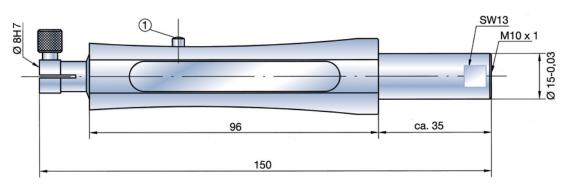

MH10-150

Messuhrhalter, temperaturstabilisiert

Ausführung mit Klemmung

Klemmbohrung	Bestell-Nr.
8H7	MH10-150
3/8"H7	MH10-150-Z

Der neue MH10-150 wird generell mit 2 Beschriftungsleisten (BL) geliefert. Für den Halter kann der Schlagschutz (siehe Die Rändelklemmschraube wird gegen eine Innensechskantschraube ausgetauscht und der Schlagschutz einfach aufgesteckt und mit 2 Schrauben geklemmt. Weitere Details siehe MH10-150-P 🗐 26.

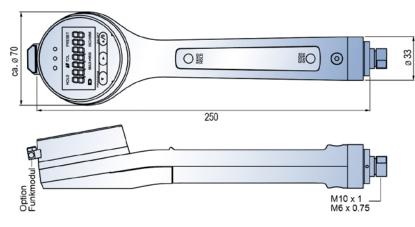

MH10-150-R

Messuhrhalter, temperaturstabilisiert mit Anlüftung

Alle Maße wie bei MH10-150, zusätzlich Drucktaste. Durch Betätigen der Drucktaste (1) wird der Messstift des Anzeigegerätes von der Triebnadel des BMD abgehoben. Es wirkt keine Messkraft mehr auf den BMD. Siehe auch Ausführung "PG" (8) Ausführung MH10-150-R-P mit Schlagschutz.

Ausführung mit Klemmung

Klemmbohrung	L	Bestell-Nr.
8H7	35	MH10-150-R
8H7	25	MH10-150-R-P
3/8"H7	35	MH10-150-R-Z
3/8"H7	25	MH10-150-R-P-Z



DIATRON1000-V10 **DIATRON1000-V6 DIATRON1000-V4**

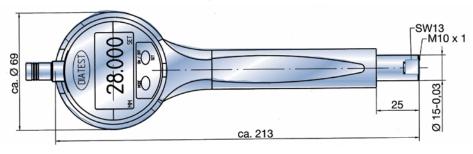
Messuhrhalter mit hochgenauer integrierter Anzeige

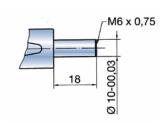
- Komplettsystem mit 7-stelliger Anzeige
- Hohe Datensicherheit durch echten Funk (Option)
- Auflösung 0,0001 mm
- 3 mm Messweg
- ± 0,0002 mm Linearitätsabweichung über den Messweg
- mm/inch Anzeige
- Passwortschutz
- am Messinstrument programmierbar
- statische und dynamische Messung
- Toleranzanzeige in allen Modi zuschaltbar
- Weitergabe der Messwerte an RS232 oder USB-Schnittstelle möglich
- mit Feinverstellung
- spritzwassergeschützt
- bei sehr kleinen Toleranzen die Option MZ für den BMD verwenden!

Option Funk

- bis zu 120 Geräte an einem Empfänger anschließbar
- Reichweite bis zu 200 m (umgebungsabhängig)
- kostenlose Software zum Datenempfang

MH10-P


MH6-P


Messuhrhalter mit Schlagschutz

Temperaturstabilisierter Halter für Messuhren MDU125, MU10 m, MU1 m und F1000 (Messuhr nicht im Preis inbegriffen). Der Halter ist generell mit 2 Beschriftungsleisten ausgestattet. Der Schlagschutz kann einfach durch Lösen der beiden Klemmschrauben entfernt werden (siehe auch MH10-150, 1 25).

Ausführungen

mit 8 mm Klemmung	mit 3/8" Klemmung
MH10-150-P	MH10-150-P-Z
MH10-61-P	MH10-61-P-Z
MH6-150-P	MH6-150-P-Z
MH6-51-P	MH6-51-P-Z

BL

Beschriftungsleiste BL (Aufpreis)

Viele Halter werden standardmäßig mit Beschriftungsleiste ausgestattet (siehe Tabelle). Außer dem Halter MH10-150-F entspricht die Beschriftungsleiste den unten angegebenen Maßen. Einige Halter können mit einer zusätzlichen 2. Beschriftungsleiste versehen werden (z.B. AH, EH-M). Halter ohne Beschriftungsleiste können evtl. mit BL ausgestattet werden. Bitte fragen Sie nach.

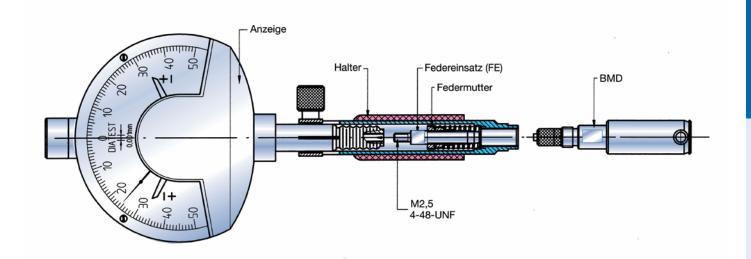
> Bestellzusatz: 1. Leiste BL-1

> > 2. Leiste BI -2

Ersatz-Beschriftungsleiste für Halter

(außer MH10-150-F) Bestell-Nr.: BLE

Halter	Anzahl BL	Seite 🗊
MH6-51	1	24
MH10-61	1	25
MH6	2	24
MH10-150 (R-P)	2	25/26
L-MH10-150	2	30
MH10-150-R	2	25
EH-V	2	30
EH-V-DS	1	30
MH10-150-F	1	30
MH10-150-P	2	26
MH10-170-D	2	32
MH10-150-PG	2	32
AH6/10-61	1	33
AH6/10-140	1	33
DIATRON1000	1	26
EH-M	1	31



Funktion und Montage

Der komplette Federeinsatz mit Gewinde M2,5 wird gegen den Messeinsatz des Anzeigegerätes ausgetauscht. Die Regulierung erfolgt durch Verstellen der Federmutter, wobei die richtige Messkrafteinstellung durch Versuche ermittelt werden muss. Als Faustregel gilt: Es ist die geringste Messkraft zu ermitteln, bei der noch eine einwandfreie Wiederholgenauigkeit des Messergebnisses gewährleistet ist.

Achtung: Das Einstellen der Messkraft muss in der gleichen Lage erfolgen, in der auch später im Werkstück gemessen wird (horizontal oder vertikal). Der Halter MH4-67-F bietet durch die Rändelhülse einen ausgezeichneten Bruchschutz für die BMD der Serie 4. Sie dient gleichzeitig als stufenlos von 0 bis 20 mm einstellbarer Tiefenanschlag. Der Halter kann zudem direkt in die Kleinmessvorrichtung KM eingespannt werden, da der Schutzhülsendurchmesser 15 – 0,03 mm beträgt.

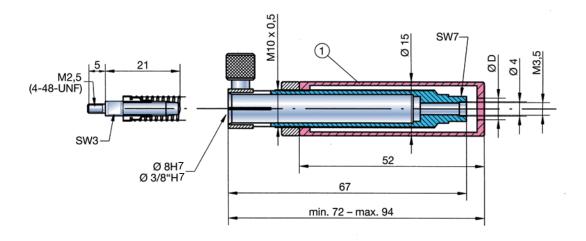
Vorgehensweise

- Messeinsatz des Anzeigegerätes gegen den kompletten Federeinsatz austauschen
- 2. BMD in den Halter einschrauben und festziehen
- 3. Erforderliche Gegenkraft (gegen die Messuhr) über die Federmutter einstellen
- 4. Anzeigeeinheit in Halter einspannen
- Messkraft prüfen und ggf. Schritt 3 wiederholen.

Halter mit Federkraftregulierung sollten immer dann eingesetzt werden, wenn keine Messuhr mit der empfohlenen Messkraft (siehe 6) vorhanden ist, oder wenn aus technischen Gründen (z.B. sehr dünnwandiges Werkstück) eine minimale Messkraft erforderlich ist.

MH4-67-F

Messuhrhalter mit Federkraftregulierung für BMD der Serie 4

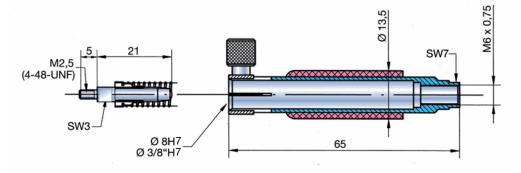

Die Rändelhülse (1) dient als Schutz für den BMD und kann gleichzeitig noch als Tiefenanschlag verwendet werden.

Bei Bestellung ohne BMD bitte den Ø D angeben!

Ausführung mit Klemmung

Rändelhülse einzeln:

Klemmbohrung	Bestell-Nr.	für Artikel	Bestell-Nr.
8H7	MH4-67-F	MH4-67-F	MH4-67-F-RH
3/8"H7	MH4-67-F-Z	MH4-67-F-Z	MH4-67-F-RH-Z

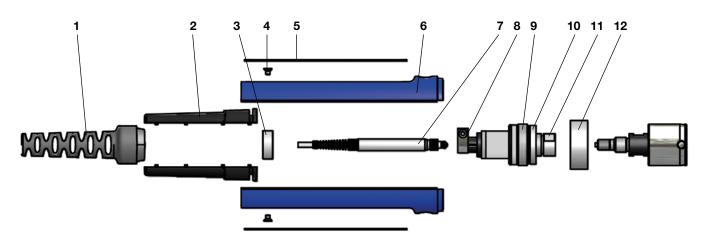


MH6-65-F

Messuhrhalter mit Federkraftregulierung für BMD der Serie 6

Ausführung mit Klemmung

Klemmbohrung	Bestell-Nr.
8H7	MH6-65-F
3/8"H7	MH6-65-F-Z

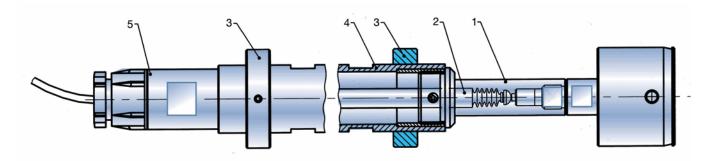

Aufbau und Montage des Halters

Die Tasterklemmung (8) ist in Ø 8H7 oder in 3/8"H7 lieferbar. Der Taster (7) mit den maximalen Baumaßen Ø 12 mm und Länge 140 mm ist in den stoßgeschützten Halter eingespannt. Das Tasterkabel wird nach der

Montage in den beiden Kabelführungen (2) geklemmt und geführt. Der Knickschutz (1) verhindert ein zu starkes Biegen des Kabels. Die Feinverstellung (11) mit Kontermutter (10) dient zur Tasterjustierung und dem Ausrichten

der BMD. So kann sichergestellt werden, dass der Taster sich immer im Bereich des elektrischen Nullpunktes befindet. Die Halter sind im Standard mit 2 Beschriftungsleisten (5) ausgestattet (Ausführung EH-V). Optional kann

eine Beschriftungsleiste durch eine Folientastatur ersetzt werden (Ausführung EH-V-DS). Es besteht dann die Möglichkeit, z.B. Messwerte durch Tastendruck zu übernehmen.



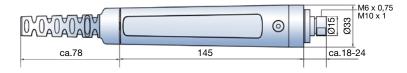
- 1. Knickschutz
- 2. Kabelführung
- 3. Verbindungsring
- 4. Schrauben
- 5. Beschriftungsleisten
- 6. Griffschalen
- 7. Messtaster
- 8. Tasterklemmung
- 9. Haltereinheit
- 10. Kontermutter
- 11. Feinverstellung
- 12. Überwurfring

Aufbau und Montage zur Messung tiefer Bohrungen

Der Aufbau eignet sich zum Messen tiefer Bohrungen in Verbindung mit elektrischen Messtastern. Bei Verwendung einer TVT15 ist auf ausreichende Kabellänge des Messtasters zu achten, da eine Kombination mit Verlängerungskabel innerhalb der TVT15 nicht möglich ist. Der Messtaster (2) wird durch die Tiefenverlängerung(-en) TVT (4) geführt und in den Halter EH10-61 (1) geklemmt.
Als Abschluss kann eine Kabelklemmung TVT-EHK (5) verwendet werden (nicht möglich bei Einsatz eines Verlängerungskabels, da der Stecker des Tasters nicht durchgezogen werden kann).

Um ein Verkanten des BMD in der Bohrung zu vermeiden, ist es vorteilhaft, klemmbare Stützringe (3) – auf Anfrage – zu verwenden. Verlängerungen und Kabelklemmung, siehe 🗊 39.

- 1. Halter EH10-61-T15 EH10-61-T28
- 2. Messtaster
- 3. Stützringe
- 4. TVT- (39)
- 5. TVT-EHK (39)


Elektrische Halter dienen der Aufnahme von Messtastern, die z.B. an das Diatron 6000, das Diatron 2200 oder an einen Messrechner angeschlossen werden.

EH-V

Elektrischer Halter mit Feinverstellung mit Gewinde M3,5 x 0,35, M6 x 0,75 oder M10 x 1

Halter für Messtaster. Mit Hilfe der Feinverstellung kann der elektrische Nullpunkt des Tasters eingestellt werden, ohne den Messtaster zu verschieben. Mit Aufhängung optional erhältlich!

Klemmbohrung	Anschlussgewinde	Bestell-Nr.
8H7	M3,5 x 0,35	EH-V4
8H7	M6 x 0,75	EH-V6
8H7	M10 x 1	EH-V10
3/8"H7	M3,5 x 0,5	EH-V4
3/8"H7	M6 x 0,75	EH-V6-Z
3/8"H7	M10 x 1	EH-V10-Z

EH-V-DS

Elektrischer Halter mit Drucktasten mit Gewinde M3,5 x 0,35, M6 x 0,75 oder M10 x 1

Ausführung des Halters mit 2 Drucktasten zur Messwertübernahme. Anstelle von 2 Beschriftungsleisten wird eine Beschriftungsleiste und eine Folientastatur montiert. An das offene Ende der Folientastatur kann mit Hilfe eines Nullkraft-Steckers ein Kabel angeschlossen und zu einem Peripheriegerät geführt werden. Bei Tastendruck kann die gewünschte Funktion herbeigeführt werden (z.B. Messwertübernahme).

Hinweis: Die beiden Drucktasten sind parallel geschaltet.

Klemmbohrung	Anschlussgewinde	Bestell-Nr.
8H7	M3,5 x 0,35	EH-V4-DS
8H7	M6 x 0,75	EH-V6-DS
8H7	M10 x 1	EH-V10-DS
3/8"H7	M3,5 x 0,35	EH-V4-DS-Z
3/8"H7	M6 x 0,75	EH-V6-DS-Z
3/8"H7	M10 x 1	EH-V10-DS-Z
○龍		

MH

Spezial-Messuhrhalter

MH10-150-F

Messuhrhalter mit Federkraftregulierung

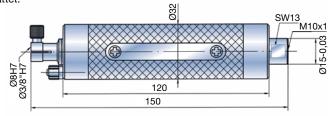
Durch Verstellen und Kontern der beiden Griffhülsen (1 und 2) des Halters kann die Messkraft des Anzeigegerätes um ca. ±1 N verändert werden.

Wichtig z.B. beim Messen dünnwandiger Werkstücke und zur Reduzierung des Verschleißes der BMD-Messradien.

Der Halter ist generell mit 1 Beschriftungsleiste ausgestattet.

Ausführung mit Klemmung

Klem	mbohrung	Bestell-N	r.		
8H7		MH10-15	0-F		
3/8"H	17	MH10-15	0-F-Z		
03/8"H7	15	100	032	SW13	M10x1 0 042-0,03

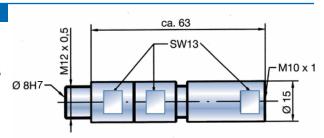

L-MH10-150

Messuhrhalter, temperaturstabilisiert für BMD mit Luftanschluss

Für Luftschlauch mit Innendurchmesser 3,0 mm und Außendurchmesser 4,3 mm. Benötigter Luftdruck 2 – 3 bar. Der Halter ist generell mit 2 Beschriftungsleisten ausgestattet.

Ausführung mit Klemmung

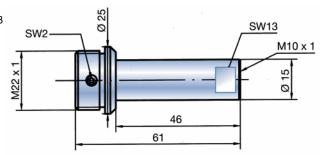
Klemmbohrung	Bestell-Nr.	
8H7	L-MH10-150	
3/8"H7	L-MH10-150-Z	
	032	SW13



EH10-61-T15

Messtasterhalter für TVT-15

Der Halter ist nur für elektrische Messtaster mit Klemmung Ø 8H7 in Verbindung mit DIATEST-Tiefenverlängerung TVT-15 geeignet. Eigenschaften wie bei EH10-61-T-28. Es können jedoch keine Verlängerungskabel innerhalb der TVT-15 verwendet werden.

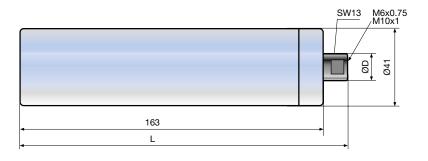

EH10-61-T28

Messtasterhalter für TVT-28

Der Halter ist nur für elektrische Messtaster mit Klemmung Ø 8H7 in Verbindung mit DIATEST-Tiefenverlängerung TVT-28 geeignet.

Vorteil: Der Messwert wird von dem Messtaster direkt am BMD erfasst ohne Einfluss mechanischer Zwischenstücke. Dadurch können Messungen in Tiefen von mehreren Metern mit höchster Präzision durchgeführt werden. Der Innendurchmesser der TVT-28 ist groß genug, um die Kupplung von einem Messtasterstecker und einem Verlängerungskabel aufnehmen zu können.

Mindestdurchmesser der Bohrung 28,5 mm.

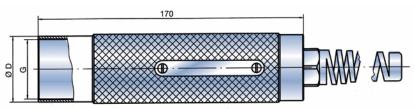

EH10-S

EH6-S

Halter für Funktaster mit Modul FMTD-S

Die Funktaster mit Funkmodul können in dem Halter sicher montiert werden. Der Kunststoffgriff verhindert eine Abschirmung der Funktaster.

Anschlussgewinde	ØD	L
M10x1	15 mm	176 mm
M6x0,75	8 mm	170 mm


EH-M

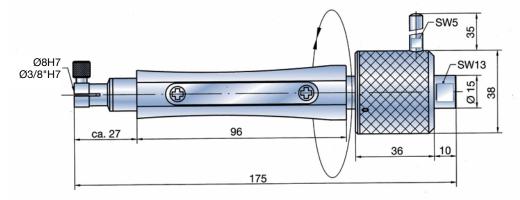
Elektrischer Halter für Mehrstellenmessdorne

Der Halter ist ausschließlich für den Einsatz mit Mehrstellen-BMD (siehe 🗊 22) geeignet. Die entsprechende Ausführung (Anschlussgewinde) entnehmen Sie bitte der Tabelle auf der 🗊 23.

Der Halter ist generell mit 1 Beschriftungsleiste ausgestattet.

Ausführung	Anschlussgröße	Gewinde G	ØD
EH-M35 x 1,5	1	M35 x 1,5	38 mm
EH-M40 x 1,5	2	M40 x 1,5	42,5 mm
EH-M52 x 1,5	3	M52 x 1,5	56 mm

MH10-170-D


Messuhrhalter mit drehbarem Zwischenstück

Der Messuhrhalter erlaubt die Rotation des BMD im Werkstück um 360°. Dabei bleibt die Messwertanzeige in der gleichen, gut ablesbaren Position. Einsetzbar für z.B. Prüfung auf Ovalität bzw. Polygon.

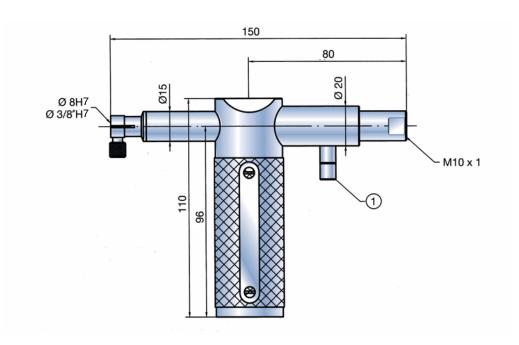
Der Halter ist generell mit 2 Beschriftungsleisten ausgestattet.

Ausführung mit Klemmung

Klemmbohrung	Bestell-Nr.
8H7	MH10-170-D
3/8"H7	MH10-170-D-Z

MH10-150-PG

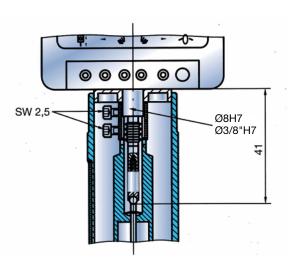
Messuhrhalter mit Messkraftabhebung

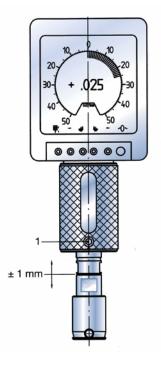

Die Messkraft des Anzeigegerätes wird mit dem Bolzen (1) abgehoben.

BMD in Ausführung PG (siehe **1** 8) können dadurch ohne Messkraft an den Messradien in die Bohrung eingeführt werden (Verschleißreduzierung, vorteilhaft bei empfindlichen Oberflächen usw.).

Der Halter ist generell mit 2 Beschriftungsleisten ausgestattet.

Ausführung mit Klemmung


Klemmbohrung	Bestell-Nr.
8H7	MH10-150-PG
3/8"H7	MH10-150-PG-Z

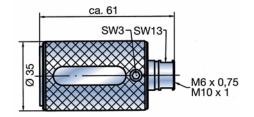


Für die Messwertanzeige ANA (ANA1 und ANA1-RS232) sind spezielle Halter lieferbar. Die Anzeige wird mittels der Doppeltangentialklemme fest in den Halter eingespannt.

Selbst bei starker Beanspruchung ist ein Verschieben der Messwertanzeige kaum möglich. Beim Einsatz von anderen Messwertanzeigen muss das Maß von 41 mm eingehalten werden. Die Halter sind generell mit einer Beschriftungsleiste ausgestattet.

Bei den Analodighaltern ist das Verstellen der Anzeige durch Verschieben im Halter nicht möglich. Die Einstellung erfolgt durch die im Halter eingebaute Feinverstellung.

Mit der Innensechskantschraube (1) SW3 wird die Feinverstellung gesichert. Der Verstellbereich beträgt ca. ±1 mm.

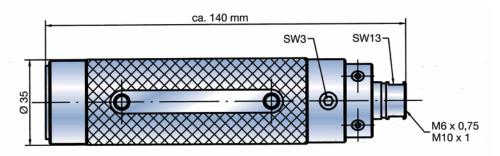

AH6-61

AH10-61

Kurzer Halter für Anzeigegerät Analodig

Messuhrhalter ohne Triebstift

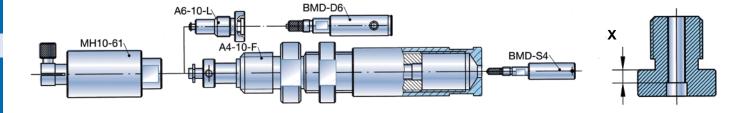
Ausführung	Klemmbohrung	Anschlussgewinde
AH6-61	Ø 8H7	M6 x 0,75
AH6-61-Z	Ø 3/8"H7	M6 x 0,75
AH10-61	Ø 8H7	M10 x 1
AH10-61-Z	Ø 3/8"H7	M10 x 1


AH6-140

AH10-140

Halter für Anzeigegerät Analodig

Messuhrhalter mit Triebstift


Ausführung	Klemmbohrung	Anschlussgewinde
AH6-140	Ø 8H7	M6 x 0,75
AH6-140-Z	Ø 3/8"H7	M6 x 0,75
AH10-140	Ø 8H7	M10 x 1
AH10-140-Z	Ø 3/8"H7	M10 x 1

BMD-Adapter ermöglichen den Anschluss von BMD-Typen mit kleinerem Gewinde an BMD-Zubehörelemente mit größerem Gewinde. Ausführung SP: Mit Schutzbohrung (Bruchschutz für BMD) Maß X = Das Maß X verlängert den Aufbau um das angegebene Maß.

Zusätzlich zu den Adaptern haben auch Tiefenverlängerungen TV4 und TV3,8 (siehe 🗊 37) Adapterfunktion. Hinweis: Beim Einsatz von Adaptern ist auf die geeignete Messkraft der Anzeige zu achten, insbesondere bei Adaptern für die Serie 4.

Adapter für BMD Serie 4

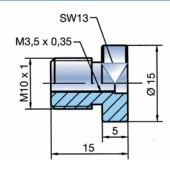

A4-6

Adapter Serie 4 auf Serie 6

Der Adapter ist so ausgelegt, dass er auch für BMD-PA verwendet werden kann.

X = 1

Adapter mit zusätzlichem Bruchschutz erhältlich Best.-Nr. A4-6-SP



A4-10

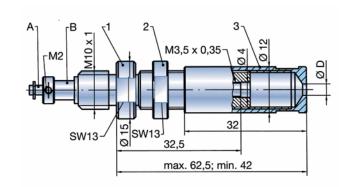
Adapter Serie 4 auf Serie 10

Achtung: bei Verwendung von Zubehör der Serie 10 mit Triebstiften (z.B. TV15 oder MH10-150) kann dieser Adapter nicht verwendet werden.

X = 3

A4-10-F

Adapter Serie 4 auf Serie 10 mit regelbarer Federkraft


BMD der Serie 4 benötigen eine Messkraft von 0,3-0,4 N. Eine Feder im Adapter (1) wirkt gegen die Anzeigemesskraft. Durch Verstellen der Hülse B gegen den Gewindestift A kann die Federkraft individuell eingestellt werden.

Die Hülse (3) dient als Bruchschutz und Tiefenanschlag. Diese kann im Bereich von 0 bis 20,5 mm stufenlos verstellt werden. Die Hülse wird mit der Kontermutter (2) gesichert. Korrektes Einstellen der minimalen Messkraft siehe 🗊 27.

Bei Bestellung das Maß Ø D angeben.

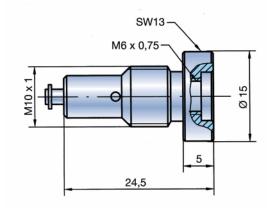
Beispiel: A4-10-F-D=7,2

Best.-Nr. Hülse (3) einzeln: A4-10-F-RH

Adapter für BMD Serie 6

A6-10-L

Adapter Serie 6 auf Serie 10 mit Triebstift

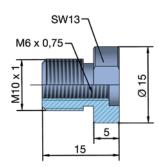

Dieser Adapter wird generell empfohlen bei der Adaptierung von Serie 6 auf Serie 10:

- Der Triebstift ermöglicht die Verwendung des gesamten Zubehörs der Serie 10
- BMD der Serie L

Bei Einsatz von BMD-PA Ausführung A6-10-L-PA verwenden (ohne Abbildung).

$$X = 3$$

Adapter mit zusätzlichem Bruchschutz erhältlich Best.-Nr. A6-10-L-SP

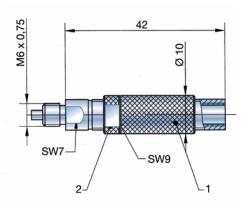

A6-10-0

Adapter Serie 6 auf Serie 10

Achtung: bei Verwendung von Zubehör der Serie 10 mit Triebstiften (z.B. TV15 oder MH10-150) kann dieser Adapter nicht verwendet werden.

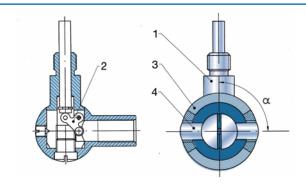
$$X = 3$$

Adapter mit zusätzlichem Bruchschutz erhältlich Best.-Nr. A6-10-0-SP


A6-6-F

Adapter für BMD der Serie 6 mit regelbarer Federkraft

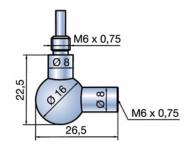
Durch Verstellen der Hülse (1) kann die Federkraft individuell eingestellt werden.


Mit der Kontermutter (2) wird die Hülse gesichert.

Korrektes Einstellen der minimalen Messkraft siehe 🗊 27.

Winkelstücke werden z.B. bei beengten Platzverhältnissen oder bei Querbohrungen eingesetzt. Die Umlenkung um 90° erfolgt über einen hochpräzisen Umlenkhebel (2). Beim Einschrauben des BMD ist darauf zu achten, dass der Umlenkhebel sich in der unteren Position (siehe Skizze) befindet.

Die Winkelstellung der Messkontakte (4) des BMD (3) zu dem Winkelstück (1) ist nicht festgelegt. Sollte eine bestimmte Winkelstellung bevorzugt werden, bitte bei Auftrag angeben.
Weitere Winkelstücke mit 45° und 60° sind ebenfalls verfügbar.


W6

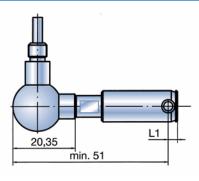
Winkelstück für BMD der Serie 6

Bei Verwendung von BMD der Serie 4 muss ein Adapter eingesetzt werden.

Weitere Winkelstücke mit 45° und 60° sind ebenfalls verfügbar (Ausführung ähnlich).

Bestell-Nr. 45°: W6-45 Bestell-Nr. 60°: W6-60 Bestell-Nr. 90°: W6

SO-W6

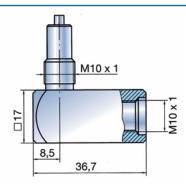

BMD mit Sonderwinkelstück für die Serie 6

Sind die Baumaße bei Verwendung des BMD mit Winkelstück zu lang, so kann die Ausführung SO-W6 verwendet werden. Hierbei wird das Winkelstück und der BMD im Bereich des Anschlussgewindes gekürzt. Der BMD und das Winkelstück bilden eine Einheit und können nur komplett geliefert werden.

Achtung: Zu dem Maß 51 mm muss noch das Maß L1 des

BMD hinzugerechnet werden!

Bestellbeispiel: BMD-S6-CR-10-SO-W6


W10

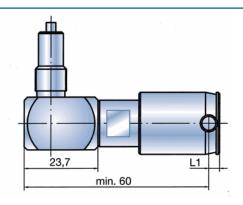
Winkelstück für BMD der Serie 10

Bei BMD mit Luftanschluss muss das Winkelstück L-W10 verwendet werden. Bestell-Nr. W10 (BMD ohne Luftanschluss) L-W10 (BMD mit Luftanschluss)

Weitere Winkelstücke mit 45° und 60° sind ebenfalls verfügbar (Ausführung ähnlich).

Bestell-Nr. 45°: W10-45 Bestell-Nr. 60°: W10-60 Bestell-Nr. 90°: W10

SO-W10


BMD mit Sonderwinkelstück für die Serie 10

Einsatz entsprechend wie SO-W6. Kürzere Ausführung als die Mindestlänge 60 mm kann bis Ø 20 mm durch das Verwenden von BMD der Serie 6 mit SO-W6 erreicht werden.

Achtung: Zu dem Maß 60 mm muss noch das Maß L1 des BMD hinzugerechnet werden!

Bestellbeispiel: BMD-S10-CR-28-SO-W10

Auch in Ausführung L-SO-W10 (BMD mit Luftanschluss)

Tiefenverlängerungen gibt es in zwei verschiedenen Ausführungen:

- Tiefenverlängerung mit Triebstift (TV)
- Tiefenverlängerung ohne Triebstift (TVT)

Die Tiefenverlängerungen TV können je nach Ausführung für Messtiefen bis zu mehreren Metern verwendet werden.

Die meisten Tiefenverlängerungen sind temperaturstabilisiert.

Das bedeutet, dass Temperaturänderungen z.B. durch Handwärme das Messergebnis nicht merklich beeinflussen.

Es muss darauf geachtet werden, dass sich die Tiefenverlängerung während der Messung nicht durchbiegt, da es ansonsten zu Messfehlern kommt.

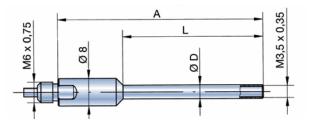
Die Tiefenverlängerungen können erst ab der Größe TV8 (7,8) miteinander kombiniert werden.

Die TV4 hat 2 unterschiedliche Anschlussgewinde (Adapterfunktion).

Die Tiefenverlängerungen TV4 bis TV15 sind mit zusätzlicher Druckfeder lieferbar. Dies kann sinnvoll sein, wenn ein BMD mit langer Verlängerung über Kopf eingesetzt wird (Eigengewicht des Triebstiftes wirkt der Messkraft der Messuhr entgegen) und die Messkraft insgesamt erhöht werden muss.

Nachträglicher Federeinbau ist möglich. Bestell-Zusatz: F z.B. TV15-500-F

Tiefenverlängerungen Typ TVT sind nur für die Anwendung mit Messtastern geeignet. Der Taster wird mit den Haltern EH-10-61-T28 (15) direkt am BMD geklemmt und das Anschlusskabel durch die Verlängerung gezogen (fii 39).


TV4 (3,8)

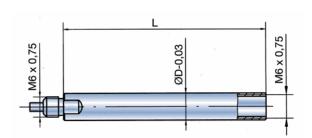
Tiefenverlängerung Serie 4

Tiefenverlängerungen TV4 sind geeignet für BMD der Serie 4. Die Tiefenverlängerungen können nicht miteinander kombiniert werden. Aufgrund der unterschiedlichen Gewinde hat die Verlängerung zusätzlich eine Adapterfunktion (Serie 4 auf Serie 6).

Alle Tiefenverlängerungen der Serie 4 sind temperaturstabilisiert.

Die TV4 ist nur bedingt für automatische Messung geeignet.

ØD	L	Α	Bestell-Nr.
3,8	64	79	TV3,8-64
4,0	25	40	TV4-25
4,0	35	50	TV4-35
4,0	50	65	TV4-50
4,0	64	79	TV4-64


ØD	L	Α	Bestell-Nr.
4,0	80	95	TV4-80
4,0	100	115	TV4-100
4,0	125	140	TV4-125
4,0	250	275	TV4-250
4,0	500	525	TV4-500
4,0	750	775	TV4-750
4,0	1000	1025	TV4-1000

TV8 (7,8)

Tiefenverlängerung Serie 6

Ab L = 80 sind die TV temperaturstabilisiert. Mehrere Verlängerungen können kombiniert werden.

Bei Verwendung von BMD mit Luftanschluss Ausführung L-TV8-... verwenden. Es gelten die gleichen Baumaße: Beispiel: L-TV8-64

ØD	L	Bestell-Nr.
		T . T 0 00
7,8	20	TV7,8-20
7,8	30	TV7,8-30
7,8	40	TV7,8-40
7,8	50	TV7,8-50
7,8	64	TV7,8-64

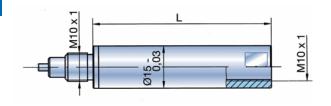
ØD	L	Bestell-Nr.
8,0	20	TV8-20
8,0	30	TV8-30
8,0	40	TV8-40
8,0	50	TV8-50
8,0	64	TV8-64
8,0	64	TV8-64-CR
8,0	64	TV8-h5-64
8,0	80	TV8-80

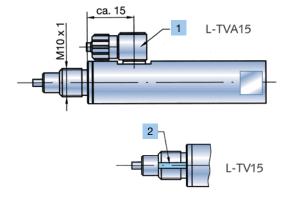
ØD	L	Bestell-Nr.
8,0	100	TV8-100
8,0	125	TV8-125
8,0	125	TV8-h5-125
8,0	250	TV8-250
8,0	500	TV8-500

TV15

Tiefenverlängerung Serie 10

Tiefenverlängerungen sind temperaturstabilisiert. Mehrere Verlängerungen können kombiniert werden.

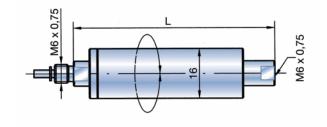

Die TV15 für BMD mit Luftanschluss ist in 2 Varianten lieferbar:


1 mit seitlichem Luftanschluss für Schlauch-Innen-Ø 3,0 Bestell-Nr. L-TVA15

> Bestell-Nr. TV15-125 TV15-250 TV15-500

2 mit Luftanschluss im Gewinde Bestell-Nr. L-TV15 (erst ab L-TV15-80)

L	Bestell-Nr.	L	
45	TV15-45	125	
64	TV15-64	250	
80	TV15-80	500	
100	TV15-100		

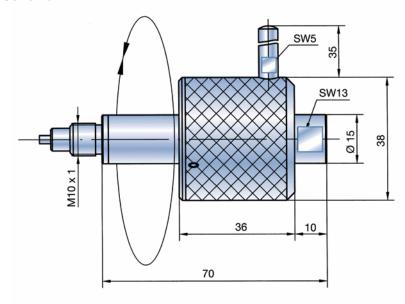


TV64-D

Drehbares Zwischenstück für Serie 6

Das drehbare Zwischenstück ermöglicht die Rotation des BMD in der Bohrung um 360°. Die Messwertanzeige bleibt dabei stehen. Anwendung: z.B. Prüfung auf Ovalität.

L	Bestell-Nr.
36	TV36-D
64	TV64-D

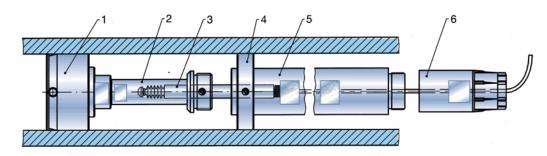

TV15-70-D

Drehbares Zwischenstück für Serie 10

Gleiches Prinzip wie bei TV64-D. Mit Anschlussgewinde M10 x 1.

Längere Ausführung auf Anfrage.

Bestell-Nr. TV15-70-D

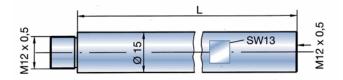

Zum Messen tiefer Bohrungen in Verbindung mit elektr. Messtastern (3) und entsprechend langem Kabel oder Verlängerung. Zur besseren Führung im Werkstück empfehlen wir die Verwendung von Stützscheiben (4). Diese sollten ca. 0,2 bis 0,5 mm kleiner sein als die Werkstückbehrung

Der Messtaster wird in den Halter (2) EH10-61-T (siehe 🗐 31)

geklemmt. Das Tasterkabel verläuft in der Tiefenverlängerung (5) und wird in der Kabelklemmung TVT-EHK (6) geklemmt.

Der Vorteil des Systems liegt in der Messwerterfassung unmittel-

bar am BMD (1). Es können keine Messfehler aufgrund von Durchbiegungen von Verlängerungen entstehen.

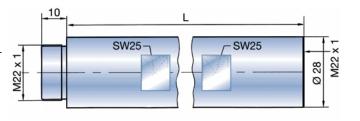


TVT15

Tiefenverlängerung mit Außendurchmesser 15

Tiefenverlängerungen TVT15 werden in Verbindung mit dem Halter EH10-61-T15 verwendet (31). Es ist zu beachten, dass keine Tasterverlängerung innerhalb der TVT verwendet werden kann, da der Außendurchmesser der Kupplung zu groß ist. Für Messtiefen über 2 m ist ein Taster mit einem längeren Anschlusskabel notwendig.

L	Bestell-Nr.
125	TVT15-125
250	TVT15-250
500	TVT15-500

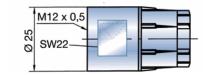

TVT28

Tiefenverlängerung mit Außendurchmesser 28

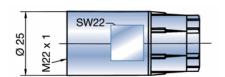
Tiefenverlängerungen TVT28 werden in Verbindung mit dem Halter EH10-61-T-28 verwendet ($\widehat{\parallel}$ 31).

Der Innendurchmesser der TVT28 ist so ausgelegt, dass ein Tasterverlängerungskabel mit Kupplung (Außen-Ø ca. 17,2) durchgezogen werden kann. Es kann dann keine Kabelklemmung TVT28-EHK verwendet werden!

L	Bestell-Nr.
105	T\/T00.40F
125	TVT28-125
250	TVT28-250
500	TVT28-500



TVT-EHK


Kabelklemmung für TVT15 und TVT28

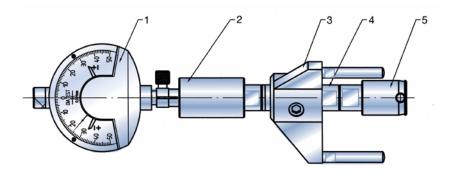
Die Kabelklemmung dient zum sicheren Herausführen des Tasteranschlusskabels aus der TVT.

Achtung: Bei Verwendung von Tasterverlängerungskabel ist der Einsatz der Kabelklemmung nicht möglich!

TVT15-EHK (für TVT15), Bestell-Nr. TVT15-EHK

TVT28-EHK (für TVT28), Bestell-Nr. TVT28-EHK

Zur Messtiefenbegrenzung. Klemmbar auf der entsprechenden Tiefenverlängerung oder auf dem Halter.

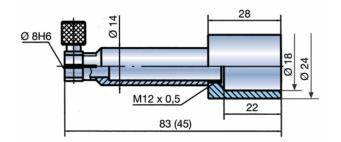

Beispiel: 1 = Messuhr

2 = Halter

3 = Tiefenanschlag

4 = Tiefenverlängerung

5 = BMD


TA8

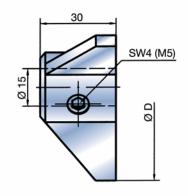
Tiefenanschlag für Serie 6

Klemmbar auf TV8 oder Halter MH6

Ausführungen:

TA8 Gesamtlänge 83 mm TA8-K Gesamtlänge 45 mm

TA15


Tiefenanschlag für Serie 10

Klemmbar auf TV15 oder MH10

Anstelle der Klemmung kann der TA15 auch mit Gewinde M24 x 1 geliefert werden (zum Aufschrauben auf z.B. TA15-C oder TA15-F).

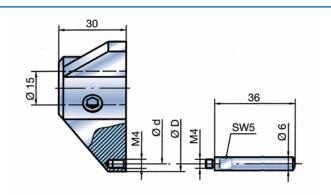
Bestell-Zusatz: M24, Beispiel: TA15-45-M24

ØD	Bestell-Nr.	ØD	Bestell-Nr.
45	TA15-45	160	TA15-160
75	TA15-75	220	TA15-220
110	TA15-110	260	TA15-260

TA15-A

Tiefenanschlag für Serie 10 mit 3 Stelzen

Klemmbar auf TV15 oder MH10


Sonderausführung: Ø d abweichend von Standard Bestell-Zusatz: SO-Ød, Beispiel: TA15-A-45-SO-Ø d=32

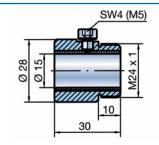
Anstelle der Klemmung kann der TA15 auch mit Gewinde $M24 \times 1$ geliefert werden (zum Aufschrauben auf z.B. TA15-C oder TA15-F).

Bestell-Zusatz: M24

Beispiel: TA15-A-45-SO-Ø d = 32-M24

ØD	Ød	Bestell-Nr.
45	38	TA15-A-45
75	68	TA15-A-75
110	103	TA15-A-110

ØD	Ød	Bestell-Nr.
160	153	TA15-A-160
220	213	TA15-A-220
260	253	TA15-A-260


TA15-C

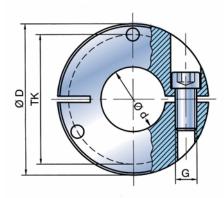
Grundkörper Tiefenanschlag

Klemmbar auf TV15 oder MH10.

Zum Aufschrauben von Sonderanschlagscheiben oder TA15/TA15-A mit Gewinde M24 x 1. Fertigung von Sonderanschlägen auf Anfrage.

Bestell-Nr. TA15-C

TA-KW


Tiefenanschlag zum Klemmen auf dem BMD-Führungszylinder

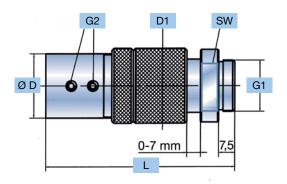
Ausführungen:

- TA-KW Tiefenanschlag Stahl nicht gehärtet (Standard)
- TA-KH Tiefenanschlag Stahl mit 3 HM-Kugeln als Auflage im Teilkreis TK
- TA-KG Tiefenanschlag Stahl gehärtet (Achtung: Erhöhte Verzugsgefahr des BMD-Zylinders)

Herstellung von TA-KW größer als 100 mm ist nicht möglich! Bestellbeispiel: TA-KW-15,75 (= \varnothing d)

Ød	ØD	TK	h	G	Ød	Ø D	TK	h	G
3-5	27	16	10	M4	35-40	65	53	12	M5
5-8	30	19	10	M4	40-45	70	58	12	M5
8-11	33	22	10	M4	45-50	75	63	12	M5
11-15	37	26	10	M4	50-60	85	73	12	M5
15-20	42	31	10	M4	60-70	95	83	12	M5
20-25	50	38	12	M5	70-80	105	93	12	M5
25-30	55	43	12	M5	80-90	115	103	12	M5
30-35	60	48	12	M5	90-100	125	113	12	M5

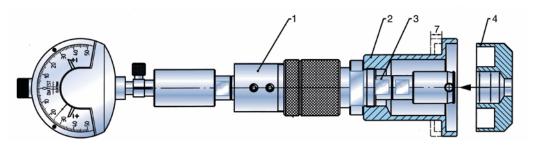
TA15-F


TA8-F

Gefederter Tiefenanschlag

Klemmbar auf TV15 bzw. auf TV8. Der Federweg ist stufenlos verstellbar von 0-7mm. Der TA15F ist kombinierbar mit Tiefenanschlägen TA15-M24, TA15-A-M24 und Sonderanschlagscheiben. Der TA8-F muss immer mit Sonderanschlagscheiben ergänzt werden. Einsatz z.B. zur Messung von 2 Ebenen in kurzen Bohrungen.

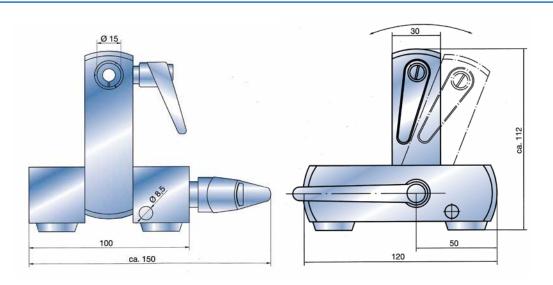
Bestell-Nr. TA15-F (klemmbar auf TV15) TA8-F (klemmbar auf TV8)


ØD	Ø D1	G1	G2	sw	L
30	35	M24x1	M4	27	88
20	26	M18x1	М3	22	59

Anwendungsbeispiel

Zum Messen kurzer Bohrungen in z. B. 2 Messebenen (Konizität usw.).

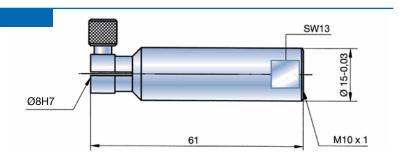
Der TA15-F (1) mit der Sonderanschlagscheibe (2) wird auf eine Tiefenverlängerung (3) geklemmt. Das Werkstück (4) wird über den BMD bis zum Anschlag geführt.



Nach der ersten Messung wird das Werkstück bis zum Ende des Federweges gedrückt und die zweite Messung durchgeführt.

Der Aufbau kann auch als Mess- Station in einem KM (¶ 42) erfolgen. Sonderanschlagscheiben auf Anfrage.

Kleinmessvorrichtungen werden eingesetzt für stationäre Messungen kleinerer Werkstücke. Es können ein oder mehrere BMD-Geräte montiert werden. Einsatzgebiete: Direkt an Fertigungsmaschinen, Honmaschinen, Schleifmaschinen usw. Kombinierbar mit den Standardelementen der BMD-Serien 6 und 10. BMD der Serie 4 müssen entsprechend adaptiert werden. Durch vielfältige Verstellmöglichkeiten ist ein optimales Handling gegeben. Sonderausführungen mit längerem Mittelteil (für größere BMD) oder längeren Seitenteilen auf Anfrage. Klemmbügel zum Befestigen des KM auf z.B. einer Werkbank siehe 🗊 42 (KM-KB). Nicht im Lieferumfang enthalten.

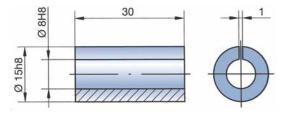


KM-MH

Messuhrhalter

Klemmbar direkt im KM. Ohne Kunststoffgriff.

Best-Nr. KM-MH

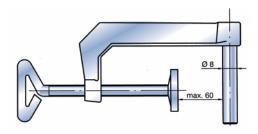


KM-GK

Geschlitzte Klemmhülse

Zum Klemmen von Tiefenverlängerungen TV8 im KM.

Best-Nr. KM-GK


KM-KB

Klemmbügel

Zum Befestigen der Kleinmessvorrichtung z. B. auf der Werkbank. Der Bolzen Ø 8 wird in die Bohrung Ø 8,5 im KM montiert.

Nicht im Lieferumfang von KM enthalten.

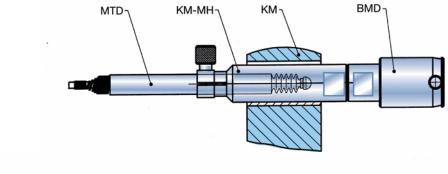
Best-Nr. KM-KB

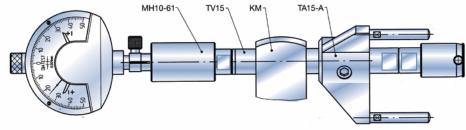


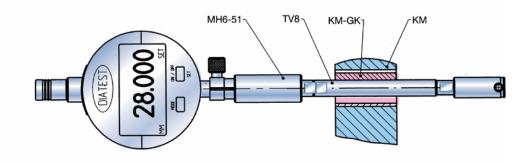
KM-VK

Verstellbarer Klemmhebel

Für Tiefenanschläge TA15. Ermöglicht ein schnelles Verstellen der Anschläge.

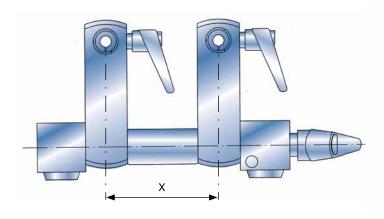

Best-Nr. KM-VK

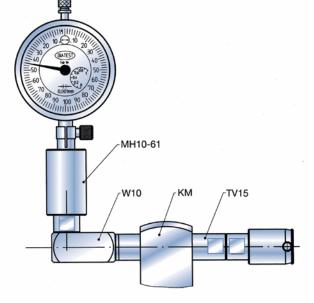



Anwendungsbeispiele Anstelle des KM-MH kann für

einen Induktivtaster auch ein EH (29) verwendet werden. Zusätzlich wird dann noch eine TV15 benötigt, die im KM geklemmt wird.

Zum Klemmen einer TV8 wird immer die geschlitzte Klemmhülse KM-GK als Adapter benötigt.



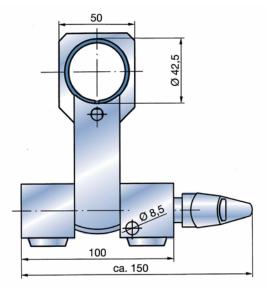

Mehrere KM können miteinander kombiniert werden.

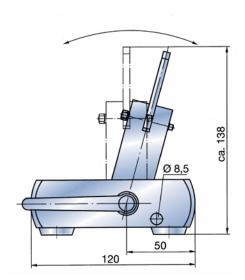
Bestell-Nr.	X
KM1	0
KM2	80
KM3	80-80
KM4	80-80-80
KM5	80-80-80
KM6	80-80-80-80

Bei Verwendung von BMD der Serie 6 mit einer TV8 wird das Winkelstück W6 mit entsprechendem Halter benötigt.

Andere Maße X (min. 30 mm), mehr Messstellen als KM-6 und Einzelteile zur Erweiterung vorhandener Kleinmessvorrichtungen auf Anfrage.

Kleinmessvorrichtung für Mehrstellenmessdorne

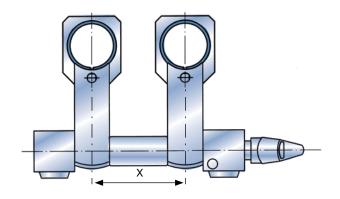

In dem KM-ME kann der Halter für Mehrstellenmessdorne EH-M40 x 1,5 direkt geklemmt werden.


Der Halter EH-M35 x 1,5 kann nur mit Hilfe der Zwischenhülse KM-ME-35-40 geklemmt werden.

Sonderausführungen mit längerem Mittelteil (für große BMD-Ø) oder längeren Seitenteilen auf Anfrage.

Klemmbügel zum Befestigen des KM auf z.B. einer Werkbank siehe KM (f) 42).

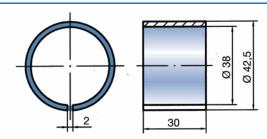
Nicht im Lieferumfang enthalten.



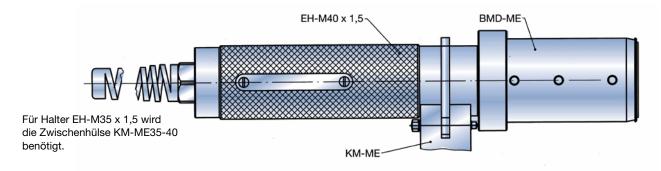
Mehrere KM können miteinander kombiniert werden.

Bestell-Nr.	X
KM-ME1	0
KM-ME2	80
KM-ME3	80-80
KM-ME4	80-80-80
KM-ME5	80-80-80-80
KM-ME6	80-80-80-80

Andere Maße X (min. 30 mm), mehr Messstellen als KM-ME6 und Einzelteile zur Erweiterung vorhandener Kleinmessvorrichtungen auf Anfrage.



KM-ME35-40


Geschlitzte Zwischenhülse

Wird zum Klemmen des Halters EH-M35 x 1,5 im KM-ME benötigt.

Best-Nr. KM-ME35-40

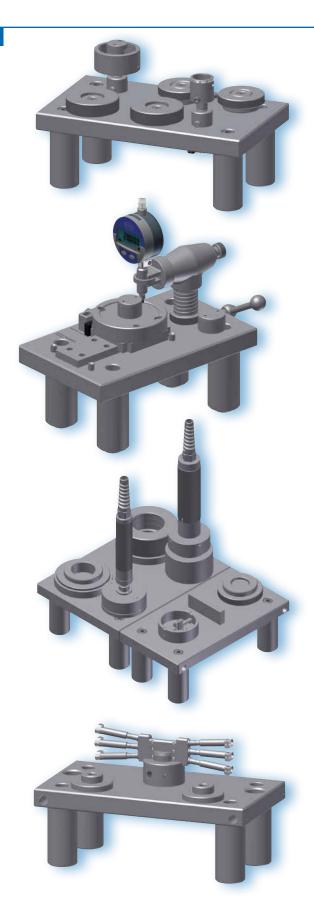
Anwendungsbeispiel

Diatest liefert kundenspezifische Messvorrichtungen basierend auf unserem Programm.

Beispiele

Vorrichtung 1

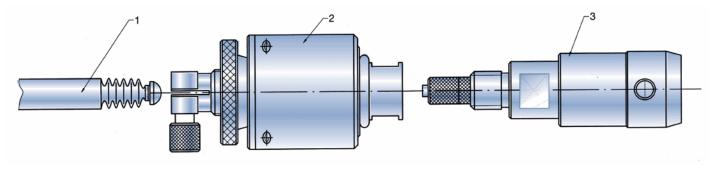
Messtisch mit Ablage für Einstellmeister und BMD für Innen- und Aussenmessung



Messtisch mit Anbautisch und BMD für Innen- und Aussenmessung

Vorrichtung 4

Messtisch zur Messung paralleler Abstände mit 2, 4 oder 6 Messpunkten

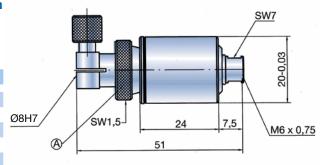


Schwimmhalter (2) werden zusammen mit BMD-Typ PK mit Pilotierkonus (3) zum Messen in Vorrichtungen eingesetzt. Aufgabe des Schwimmhalters ist es, Positionierfehler von BMD zu Bohrung auszugleichen und geringe Winkelfehler von BMD zur Bohrungsachse zu überbrücken.

Schwimmhalter werden in der Spannhülse mit Ø 20, Ø 30 und Ø 50 befestigt. Die Befestigung sollte nicht mit zu hohem Druck erfolgen, um die Funktion des SH-BMD zu gewährleisten. Die Schwimmhalter SH-BMD20 und SH-BMD30 haben keine Verdrehsicherung.

Beim Einsatz eines Induktivtasters ist ein Tasterzwischenstück notwendig (MUZ10).
Eventuell kann es erforderlich sein, den Schutzbalg am Induktivtaster zu entfernen.

Bei häufigem BMD-Wechsel wird die Ausführung AT0 empfohlen (siehe 🗊 8), besonders bei Anzeigeeinheiten mit Induktivtaster (1).

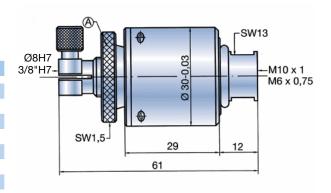

SH-BMD20

Schwimmhalter mit Außendurchmesser 20 mm

Best-Nr. SH-BMD20-6

Technische Daten

Stellmutter (A)	Schwimmbereich	Axialer Kipp∠
0 Umdrehungen	± 0 mm	0°
1 Umdrehung	± 0,13 mm	2° 40'
2 Umdrehungen	± 0,13 mm	2°40
	·	3° 20'
3 Umdrehungen	± 0,39 mm	3° 35'
4 Umdrehungen	± 0,5 mm	3° 35'


SH-BMD30

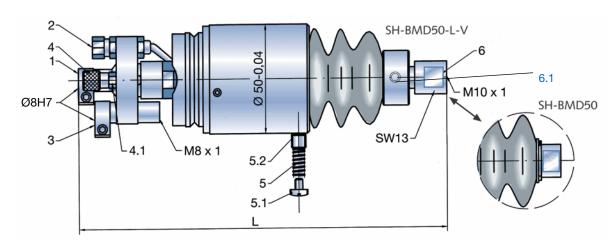
Schwimmhalter mit Außendurchmesser 30 mm

Best.-Nr. SH-BMD30-6 (Anschlussgewinde M6 \times 0,75) SH-BMD30-10 (Anschlussgewinde M10 \times 1)

Technische Daten

Stellmutter (A)	Schwimmbereich	Axialer Kipp∠
0 Umdrehungen	± 0 mm	0°
1 Umdrehung	± 0,125 mm	0° 30'
2 Umdrehungen	± 0,25 mm	0° 50'
3 Umdrehungen	± 0,375 mm	1°
4 Umdrehungen	± 0,5 mm	1° 5'
5 Umdrehungen	± 0,625 mm	1° 10'
6 Umdrehungen	± 0,75 mm	1° 10'

Einstellen des Schwimmbereiches für SH-BMD20+30


Stellmutter (A) auf Schwimmbereich 0 stellen, jedoch nicht fest anziehen, da sonst der Halter mit dem BMD nach hinten gezogen wird und nicht mehr parallel schwimmt!

Dann den gewünschten Schwimmbereich einstellen und Stellmutter mit Innensechskant-Schraubendreher sichern. Speziell bei kleinen BMD-Nennmaßen muss überprüft werden, ob der Schwimmbereich nicht zu groß eingestellt wurde. Ein zu großer Schwimmbereich kann zu einem Aufsetzen auf der Stirnfläche des BMD führen.

SH-BMD50

Schwimmhalter mit Auflaufsicherung

Schwimmhalter mit Auflaufsicherung werden im allgemeinen zur vollautomatischen Messung verwendet. Der Schwimmhalter ist gegen Verdrehen gesichert.

Ausführungen

 $\begin{array}{lll} \text{SH-BMD50} & \text{Ohne Luftanschluss und} \\ & \text{ohne Feinverstellung L} = 150 \\ \text{SH-BMD50-V} & \text{Ohne Luftanschluss mit} \\ & \text{Feinverstellung L} = 165\pm1,5 \\ \text{SH-BMD50-L-V} & \text{Mit Luftanschluss und} \\ & \text{Feinverstellung L} = 165\pm1,5 \\ \end{array}$

Einsatzbereich

BMD bis Nennmaß 150 mm mit horizontalem Einbau BMD bis Nennmaß 250 mm mit vertikalem Einbau BMD mit Option L (Luftaustritt an den Messkontakten)

Feinverstellung (Typ V)

Bei häufigem BMD-Wechsel kann die Kalibrierung des Messtasters in den elektronischen Nullpunkt an der Feinverstellung vorgenommen werden, ohne den Messtaster selbst verschieben zu müssen.

Auflaufsicherung

mit 22 mm Rückfederweg

Beispiele

- Bohrung fehlt, Werkstück falsch positioniert usw. SH-BMD50 mit Annäherungsschalter stoppt die Maschine bei zu großer Rückfederung
- BMD fährt in Sackloch- oder Stufenbohrung bis auf den Bohrungsgrund. Über den Einfederweg des SH-BMD50 und einen Messtaster wird zusätzlich die Bohrungstiefe gemessen
- BMD-SO-KO (siehe 118) wird bis zum Tiefenanschlag in die Bohrung eingefahren

Technische Beschreibung

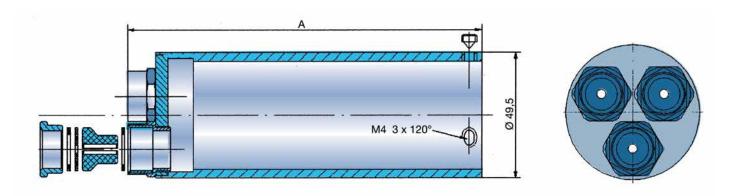
- Spannbohrung Ø 8H7 mit Tangentialklemmung zur Aufnahme des Messtasters
- 2 Anschluss für Druckluft (ca. 3-4 bar) nur bei Ausführung L Druckluftschlauch Innen-Ø3,0; Außen-Ø4,0 (z.B. Festo PU-3)
- Spannbohrung Ø 8H6 für N\u00e4herungsschalter mit Gewinde M8 x 1 im vorderen Bereich
- Stellschraube für Schwimmbereich.
 1 Umdrehung = ± 0,25 mm Schwimmbereich
- 4.1 Kontermutter SW7 zum Sichern der Stellschraube. Für Schwimmbereich = 0: Mutter gegen Stellschraube anziehen, Stellschraube komplett einschrauben
- 5 Feder für Gewichtsausgleich. 2 Stück mit unterschiedlicher Federkraft von 4-30 N
- 5.1 Stellschraube für Gewichtsausgleich
- 5.2 Federhülse
- 6 Ausführung V: Durch Lösen der Klemmschraube SW3 (6.1) kann die Feineinstellung um ± 1,5 mm verstellt werden. Das Verschieben des Messtasters ist bei BMD-Wechsel dann nicht mehr erforderlich.

Einstellung Schwimmbereich

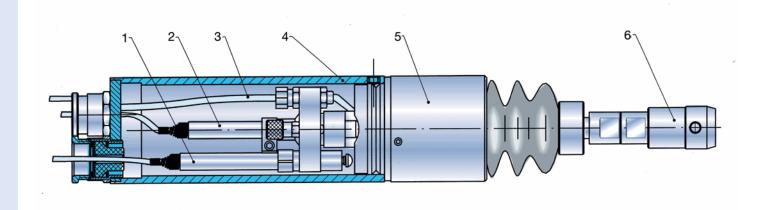
Die Mutter 4.1 gegen den Kopf der Stellschraube 4 leicht anziehen. Schraube 4 bis zum Endanschlag einschrauben (= kein Schwimmbereich). Schraube 4 zurückdrehen (1 Umdrehung = \pm 0,25 mm Schwimmbereich) bis der gewünschte Schwimmbereich eingestellt ist. Die Schraube 4 durch Kontern der Mutter 4.1 gegen Verdrehen sichern. Der max. Schwimmbereich beträgt \pm 0,75 mm.

Gewichtsausgleich

Bei horizontalem Einsatz wird durch Verstellen der Stellschraube 5.1 oder ggf. durch Austausch der Feder 5 der BMD in ca. Mittellage ausbalanciert. Hierdurch wird ein zu starker Verschleiß des Pilotierkonus beim Eintauchen in die Bohrung vermieden.


Lieferumfang: 2 verschieden starke Federn. Bei vertikalem Einsatz muss die Feder 5 ausgebaut werden.

SH-BMD50-10

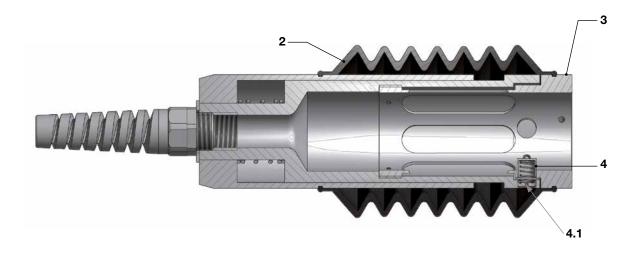

Schutzhülse für SH-BMD50

Die Schutzhülse dient zum Schutz der elektr. Taster und Näherungsschalter im eingebauten Zustand. Durch die 3 Quetschverschraubungen können die Kabel und Luftschläuche spritzwassergeschützt herausgeführt werden.

Ausführungen

Länge A	Bestell-Nr.
152 mm	SH-BMD50-10
190 mm	SH-BMD50-10-190

Beispiel


- 1 Näherungsschalter oder Taster
- 2 Elektr. Messtaster
- 3 Luftschlauch
- 4 Schutzhülse
- 5 Schwimmhalter
- 6 BMD-PK

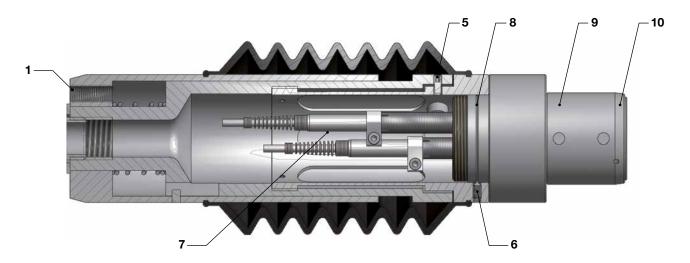
SH-BMD-ME

Schwimmhalter für Mehrstellenmessdorne

Der Schwimmhalter für Mehrstellenmessdorne mit Auflaufsicherung lässt sich ausschließlich für BMD des Typs ME-BMD (22) einsetzen.

Wichtig:

Voraussetzung für die Montage eines Mehrstellen-BMDs sind Anschlusstyp 5 und Größe 2 (siehe 🗐 22).

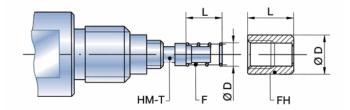

Gewichtsausgleich

Bei horizontalem Einsatz wird durch Verstellen der beiden Stellschrauben 4.1 oder ggf. durch Austausch der beiden Federn 4 der BMD in ca. Mittellage ausbalanciert. Die beiden Stellschrauben sind in einem Winkel von 96° angeordnet und müssen bei der Montage der Einheit so angeordnet sein, dass diese nach unten zeigen und ca. 48° zur Vertikalachse versetzt sind.

Technische Beschreibung

- Gewindebohrung M8 x 1 für Annäherungsschalter (Auflaufsicherung). Federweg ca. 20 mm
- Schutzbalg als Spritzwasserschutz

- Der Federkäfig ermöglicht ein freies Schwimmen. Schwimmbereich ca. +/- 1mm; nicht einstellbar
- Feder zum Gewichtsausgleich bei horizontalem Einsatz. Insgesamt 2 Federpakete im Winkel von 96°. Diese müssen bei Montage in der Maschine oder Vorrichtung so ausgerichtet sein, dass ein Gewichtsausgleich möglich ist. Bei vertikalem Einsatz des SH-BMD-ME müssen die Federn ausgebaut werden.
- Verdrehsicherung. Der Schwimmhalter ist gegen Verdrehen gesichert.
- Montageschrauben für Mehrstellen-BMD, 3 Stück (3 x 120°). Zur Montage des BMD ist ein Anschlusstyp 5 am BMD notwendig.
- Messtaster mit Spann-Ø 8h6 (und evtl. vorhandener Luftschlauch). Kabel und Schlauch werden durch den Knickschutz aus dem Schwimmhalter herausgeführt.
- 8 Anschlusstyp 5 und Anschlussgröße 2 (BMD-seitig)
- 9 Mehrstellen-BMD
- 10 Pilotierkonus

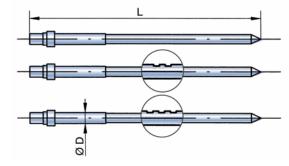


Einige Teile an einem BMD können ausgetauscht werden. Es muss jedoch darauf geachtet werden, dass die korrekten Teile verwendet werden. Der Einsatz von falschen Ersatzteilen führt zu Fehlmessungen.

Bezeichnungen:

HM-T Hartmetall-Triebnadel Feder (nicht bei Serie 4) FΗ

Federhülse


НМ-Т

Hartmetall-Triebnadeln

Triebnadeln können selbst ausgetauscht werden. Es muss darauf geachtet werden, dass die richtige Triebnadel verwendet wird. Die Triebnadeln sind mit Kerben markiert.

ohne Kerbe 2-Punkt-BMD, BMD-FB6

BMD-FB10 2 Kerben 3 Kerben 3-Punkt-BMD mehr als 3 Kerben Sondertriebnadel

Bezeichnung		Serie 4	4 (M3,5 x	0,35)	Serie 6 (M6 x 0,75)			Serie 10 (M10 x 1)				
нм-т	ØD	L	Kerben	Bestell-Nr.	ØD	L	Kerben	Bestell-Nr.	ØD	L	Kerben	Bestell-Nr.
2-Punkt	1,5	42,8	0	HM-T4	1,5	42,8	0	HM-T6	2,7	59,5	0	HM-T10
FB					1,5	42,8	0	HM-T6	2,7	59,5	2	HM-T10-FB
3-Punkt					1,5	42,5	3	HM-T6-3P	2,7	58,5	3	HM-T10-3P
Feder					2,5	4		F6	3,7	10		F10
Federhülse	2,8	6		FH4	4,5	5		FH6	7	8,5		FH10

ZU Zubehör: Einstellringe nach DIN 2250-C und DIATEST Werksnorm

Einstellringe dienen zum Kalibrieren des Messgerätes.

Hierzu eignen sich besonders Einstellringe nach DIN 2250-C, die in allen Zwischenmaßen von Ø 1 bis 315 mm von DIATEST bezogen werden können.

Alternativ können auch Einstellringe nach DIATEST Werknorm verwendet werden. Diese können jedoch nur in festen Durchmessern im Bereich Ø 3,0 bis 40,0 mm von DIATEST bezogen werden.

 d_3

132

140

150

160

170

180

190

200

212

224

236 250

265

280

300

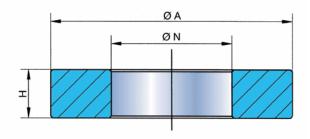
315

335

355

Einstellringe DIN 2250-C, Toleranztabelle

Einstellringe DIN 2250-C, Toleranztabelle


Ausführung	Nenndurch- messerbereich	Baumaße	Ausführung	Nenndurchmesser- bereich	Baumaße
mm	d ₁	$b_1 d_2 d_3$	mm	d ₁	$b_1 b_2 d_2$
	> 1 - 2,5	4 22		> 100 - 110	28 14 170
	> 2,5 - 3	5 22		> 110 - 120	28 16 180 ⁻
	> 3 - 5	5 22		> 120 - 130	28 16 190 ⁻
	> 5 - 6	8 32		> 130 - 140	28 18 200 ⁻
	> 6 - 10	8 32		> 140 - 150	28 18 212 ⁻
	> 10 - 15	10 38		> 150 - 160	28 20 224 ⁻
	> 15 - 18	12 45		> 160 - 170	32 20 236
F F F	> 18 - 20	12 45	 	> 170 - 180	32 20 250 2
	> 20 - 25	14 53		> 180 - 190	32 22 265 2
	> 25 - 30	16 63		> 190 - 200	32 22 280 2
<u> </u>	> 30 - 32	16 63		> 200 - 212	32 22 300 2
	> 32 - 40	18 71	<u> </u>	> 212 - 224	32 25 315 2
	> 40 - 50	20 85	<u> </u>	> 224 - 236	36 25 335 2
\//\/\	> 50 - 60	20 100		> 236 - 250	36 28 355 2
	> 60 - 70	24 112	6/9 •	> 250 - 265	36 28 375 3
b1	> 70 - 80	24 125	b2	> 265 - 280	36 28 400 3
	> 80 - 90	24 140	 	> 280 - 300	36 32 425 3
	> 90 - 100	24 160	b1_	> 300 - 315	36 32 450 3

Auch in Inch-Maßen erhältlich

Einstellringe nach DIATEST Werknorm

Nennmaß	Außendurch- messer	Höhe H	Nennmaß	Außendurch- messer	Höhe H
Ø N mm	Ø A mm	mm	Ø N mm	Ø A mm	mm
R - 2,000	20,0	4,5	R - 16,000	36,0	7,5
R - 2,250	20,0	4,5	R - 16,500	36,0	7,5
R - 2,500	20,0	4,5	R - 17,000	36,0	7,5
R - 2,750	20,0	4,5	R - 18,000	36,0	7,5
R - 3,000	20,0	4,5	R - 19,000	36,0	7,5
R - 3,250	20,0	4,5	R - 20,000	36,0	7,5
R - 3,500	20,0	4,5	R - 21,000	45,0	10,0
R - 3,750	20,0	4,5	R - 21,500	45,0	10,0
R - 4,000	20,0	4,5	R - 22,000	45,0	10,0
R - 4,500	20,0	4,5	R - 23,000	45,0	10,0
R - 5,000	20,0	4,5	R - 24,000	45,0	10,0
R - 5,500	20,0	4,5	R - 25,000	45,0	10,0
R - 5,750	20,0	4,5	R - 25,500	45,0	10,0
R - 6,000	20,0	4,5	R - 26,500	45,0	10,0
R - 6,500	20,0	4,5	R - 27,000	45,0	10,0
R - 7,000	20,0	4,5	R - 28,000	45,0	10,0
R - 7,500	20,0	4,5	R - 29,000	45,0	10,0
R - 7,750	20,0	4,5	R - 30,000	45,0	10,0
R - 8,000	20,0	4,5	R - 31,000	60,0	12,0
R - 8,500	20,0	4,5	R - 32,000	60,0	12,0
R - 9,000	20,0	4,5	R - 33,000	60,0	12,0
R - 9,500	20,0	4,5	R - 34,000	60,0	12,0
R - 10,000	36,0	7,5	R - 35,000	60,0	12,0
R - 11,000	36,0	7,5	R - 36,000	60,0	12,0
R - 11,500	36,0	7,5	R - 37,000	60,0	12,0
R - 12,000	36,0	7,5	R - 38,000	60,0	12,0
R - 13,000	36,0	7,5	R - 39,000	60,0	12,0
R - 14,000	36,0	7,5	R - 40,000	60,0	12,0
R - 15,000	36,0	7,5	n - 40,000	00,0	12,0

Genauigkeiten der DIATEST-Einstellringe (Werksnorm):

max. Abweichung vom Nennmaß:	0,0009 mm
max. Rundheitsfehler:	0,0003 mm max.
Rauhtiefe:	0,00002 mm
Härte:	62-64 HRC
- 10.00.10.00.00	-,

Bestell-Nr. = R-Nennmaß Bestellbeispiel: R-25,500

Auch lieferbar:

- DIATEST Einstellringe mit dem Ø 10,5 / 11,5 / 12,5 ... bis 29,5
- Auch in festen Inch-Maßen erhältlich

	Seite 🗊		Sei	ite 🗐			Seite 🗓
4	- Adapter 34-35	MHM	- Messradien Hartmetall	6	SO-KW	- BMD für Kurbelwellenlager	-
AD	- Abdeckung 7	MKE	- Messradien Keramik	6		breite	19
AΗ	- Halter für Analodig-Anzeige 33	MKK	 Messradien Kunststoff 	7	SO-PA	- BMD für parallele Abstände	e 19
ATO	- Toleriertes Einspannmaß 8	MR	- Messradius	6	SO-SZ	- BMD mit Sonderzylindern	19
3L	- Halter mit	MRU	- Messradien Rubin	7	SO-ZL	- BMD mit längerem L1	
	Beschriftungsleiste 26	MZ	 Eingeschränktes Z-Maß 	8		und/oder L2	17
BLE	- Ersatzbeschriftungsleiste 26	M24	- Tiefenanschlag mit Gewin	de	SO-TA	- BMD mit integriertem	
ВМ	- Bohrungsmesslehre 8		M24 40	0, 41		Tiefenanschlag	18
BMD	- Bohrungsmessdorn 10-23	NHM	- Triebnadel f. BMD-PA6	21	SO-W	- Winkelstück und BMD,	
)	- BMD Grundtyp	NFB	- Triebnadel f. BMD-PA6-FB	21		gekürzte Ausführung	3
	Durchgangsbohrung 11	NT-HM	- Triebnadel f. BMD-PA4	21	SO-2Z	- BMD mit 2 Führungszylind	er 18
)	- Bestellzusatz für drehbare	NT-FB	- Triebnadel f. BMD-PA4-FB	21	TA	- Tiefenanschlag	40, 4
	Zwischenstücke/Halter 32, 38	OCR	- BMD mit Stahlzylinder		T-BMD	- BMD für kleine Durchmesse	er 1
H, EH	🗸 - Halter für elektronische		(nicht verchromt)	4	TV	- Tiefenverlängerung mit	
	Messtaster 29-31	OD	- BMD f. Außendurchmesser	20		Triebstift	37, 3
:	- Bestellzusatz für Tiefenver-	OR	- BMD ohne Pilotierrille	15	TVT	- Tiefenverlängerung ohne	
	längerung mit Feder 37, 50	PA	- BMD f. parallele Abstände	21		Triebstift	37, 39
В	- Grundtyp Sacklochbohrungen 12	PG	- BMD ohne Eigenmesskraft	8	UM	- BMD für Untermaßmessun	g 1
iΚ	- Geschlitzte Klemmhülse 42	PK	- BMD mit Pilotierkonus	9, 14	V	- Halter o. Schwimmhalter	
М	- Hartmetall 6	R	- Maß Messradius	6		mit Feinverstellung 54,	30, 4
ІМ-Т	- Hartmetall-Triebnadel 50	S	- BMD-Standard-Grundtyp	10	VK	- Verstellbarer Klemmhebel	4
В	- Klemmbügel 42	S-FB	- BMD Typ S mit gekürztem L1	15	w	- Winkelstück	3
M	- Kleinmessvorrichtung 42-44	SH-BMD	- Schwimmhalter für		Z	- Bestellzusatz für	
	- BMD o. Zubehör		BMD PK 4	6-49		Spannbohrung 3/8"	24-3
	in Luftausführung 13, 30, 47	so	- Sonderausführung 1	5-20	ZHML	- BMD mit Hartmetallleisten	1
⁄ІВ-В	- Messbereichsbegrenzung 6	SO-B	- Sonderbeschriftung	4	ZKUL	- BMD mit Kunststoffleisten	1
1B-SO	- Messbereichserweiterung 5	SO-FB-S	O - BMD für Stufenbohrung	18	2R	- BMD mit 2 Pilotierrillen	1
1CR	- Messradien Hartchrom 6	SO-GL	- BMD zum Messen von		S0-2Z	- BMD mit 2 Zylinder	1
1DI	- Messradien Diamant 7		Längsnuten	18	3P	- BMD 3-Punkt-Ausführung	9, 1
1E	- Mehrstellen-Messdorne 22-23	SO-DZL	- BMD mit längerem L1	17	XQ	- BMD mit höherer	
ИΗ	- Messuhrhalter 24-28	so-ко	- BMD zum Messen von			Mess-Sicherheit	
			Innenkegel-Ø	18			

Brasilien

DIATEST do BRASIL

Produtos de Medição LTDA R. Ulisses Cruz, nº 1052 -3º.andar - CJ.06 - Tatuapé ZIP: 03077-000 - São Paulo -SP - Brazil

+55 1120918811

info@diatest.com.br www.diatest.com.br

Deutschland

DIATEST

Hermann Költgen GmbH

Schottener Weg 6 D-64289 Darmstadt Germany

+49 61519790

+49 6151979111

Frankreich

DIATEST COME Metrologie

145, Avenue du Stade 42170 St. Just St. Rambert France

+33 477550139

Japan

DIATEST JAPAN Ltd.

15-29, 1-Chome Hitotsuya 580-0003 Matsubara City, Osaka

Japan

+81 723306661

+81 723338223

d-info@diatest-j.co.jp www.diatest-j.co.jp

Schweden

DIATEST Sverige

AB Hans Ehlers Ranhammarsvägen 24 168 67 Bromma Sweden

+46 856470188

+46 8362279

USA

DIATEST USA

1188 Heather Drive Lake Zurich, IL 60047

L +1 1800-DIATEST

**** 847-550-4024

847-847-1947

☑ info@diatestusa.com

www.diatest.us

Vereinigtes Königreich

DIATEST (U.K.) Ltd.

18, Avondale Avenue, Hinchley Wood, Surrey, KT10 0DA England

+44 2083981100

+44 2083989887

✓ sales@diatest.co.uk

www.diatest.co.uk

Volksrepublik China

DIATEST Measuring Instruments (Beijing) Co., Ltd.

Room 602, Ocean Business Center No. 61 Balizhuang Xili, Chaoyang District 100025 Beijing

+86 1085865481

+86 13701161985

+86 1085865483

www.diatest.cn